期刊文献+
共找到941篇文章
< 1 2 48 >
每页显示 20 50 100
Peptide-based boronates: How to achieve tissue specificity in anticancer therapy
1
作者 Nicola Micale 《World Journal of Translational Medicine》 2013年第3期32-35,共4页
Dipeptidyl boronic acids are suitable candidates for the design of "pro-soft" drugs because recent studies have proven that these acids undergo a p H-dependent cyclization equilibrium, generating an inactive... Dipeptidyl boronic acids are suitable candidates for the design of "pro-soft" drugs because recent studies have proven that these acids undergo a p H-dependent cyclization equilibrium, generating an inactive cyclic form under physiological conditions. Dipeptidyl boronic acids possess a wide range of potential targets, and the 26 S proteasome appears to be one of the main targets.This multicatalytic complex is involved in intracellular protein turnover and is overexpressed in certain pathological conditions, such as malignancies, autoimmune diseases and neurodegenerative diseases. Bortezomib is the first-in-class derivative approved by the Food and Drug Administration for the treatment of hematological malignancies(i.e., relapsed and refractory multiple myeloma and mantle cell lymphoma) but is inactive against solid tumors due to an insufficient tissue distribution. The present study suggests a possible strategy for enhancing the in vivo performance of dipeptidyl boronic acids endowed with promising proteasomeinhibiting properties and their applicability as anticancer agents. In particular, dipeptidyl boronic acids might have a fruitful application as pro-soft drugs when an appropriate recognition motif serves as a substrate for a tumor-specific protease, generating the active form of the drug in situ and preventing systemic side effects after diffusion through cells and tissues. 展开更多
关键词 PEPTIDE boronateS PROTEASOME INHIBITORS ANTICANCER therapy Pro-soft drug Solid TUMORS
下载PDF
Ni-ANIPE-enabled dynamic kinetic asymmetric addition of ketones with organoboronates
2
作者 Yifeng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第9期2437-2438,共2页
The enantioenriched tertiary alcohols are among the most privileged skeletons in pharmaceuticals,natural products and agrochemicals.Therefore,tremendous effects have been devoted to constructing this chiral moiety,whi... The enantioenriched tertiary alcohols are among the most privileged skeletons in pharmaceuticals,natural products and agrochemicals.Therefore,tremendous effects have been devoted to constructing this chiral moiety,which constitutes the cornerstones in modern organic synthesis.Generally,the enantioselective nucleophilic addition of ketones functionality with the organometallics reagents represents one of the most reliable strategies to forge the tertiary carbon-oxygen bond. 展开更多
关键词 SYNTHESIS TERTIARY BORON
原文传递
Preliminary discussion on the ignition mechanism of exploding foil initiators igniting boron potassium nitrate 被引量:1
3
作者 Haotian Jian Guoqiang Zheng +4 位作者 Lejian Chen Zheng Ning Guofu Yin Peng Zhu Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期222-231,共10页
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig... Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success. 展开更多
关键词 Exploding foil initiator PDV Plasma spectrum Ignition mechanism Boron potassium nitrate
下载PDF
Unraveling the role of dual Ti/Mg metals on the ignition and combustion behavior of HTPB-boron-based fuel 被引量:1
4
作者 Arijit Debnath Yash Pal +1 位作者 Sri Nithya Mahottamananda Djalal Trache 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期134-143,共10页
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ... Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance. 展开更多
关键词 BORON B_(2)O_(3) Opposed flow burner Combustion MAGNESIUM
下载PDF
All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation 被引量:7
5
作者 Xuejing Cheng Mengyu Li +1 位作者 Hui Wang Yiyun Cheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第3期869-874,共6页
Reversible boronate-catechol linkage was widely used to construct two-dimensional coatings and threedimensional nanostructures or hydrogels.The construction of these functional materials usually requires the pre-synth... Reversible boronate-catechol linkage was widely used to construct two-dimensional coatings and threedimensional nanostructures or hydrogels.The construction of these functional materials usually requires the pre-synthesis of macro molecular building blocks,and direct gelation between natural polyphenols and small molecule boranic acids is yet to be investigated.In this study,we fabricated a family of allsmall-molecule dynamic covalent gels consisting of tannic acid and boronic acids.Transparent and thixotropic gels were formed by boronate affinity towards catechol groups abundant on natural polyphenols.The gels showed multi-responsiveness,such as acid-,base-,reduction-and oxidantsensitive depending on the used boronic acid building blocks.The chemistry for gel formation and stimuli-responsiveness was characterized by11B NMR spectroscopy.The multi-stimuli responsiveness,green processing and facile modular design make the boronic acid-tannic acid gels promising candidates for the development of smart soft materials. 展开更多
关键词 Nature polyphenols Boronic acids Hydrogels boronate-catechol complexation All-small-molecule DYNAMIC COVALENT GELS
原文传递
Rapid Determination of Endogenous 20-Hydroxyecdysone in Plants on MALDI-TOF/TOF Mass Spectrometry via Chemical Labeling Based on Boronate Affinity 被引量:2
6
作者 Ya-Shun Chen Yu-Qi Feng 《Journal of Analysis and Testing》 EI 2022年第3期318-326,共9页
20-Hydroxyecdysone(20E)derived from plants has a wide range of physiological and pharmacological ef ects on animals and humans,and rapid and sensitive methods for screening of the endogenous 20E in plants are thus req... 20-Hydroxyecdysone(20E)derived from plants has a wide range of physiological and pharmacological ef ects on animals and humans,and rapid and sensitive methods for screening of the endogenous 20E in plants are thus required.Herein,a matrixassisted laser desorption/ionization time-of-f ight tandem mass spectrometry(MALDI-TOF/TOF MS)method is described for rapid and sensitive determination of endogenous 20E in plants.It is based on the use of the(3-(acridin-9-ylamino)phenyl)boronic acid(AYPBA)as the mass tag to assist the MS and tandem MS(MS^(n))analysis of 20E on MALDI-TOF/TOF MS.Good linearity was obtained with a determination coef cient(R^(2))larger than 0.99 in the range of 0.025–2.5μΜ.The limit of detection(LOD)was 2.4 fmol.Acceptable precision and accuracy were gained by intra-and inter-day analysis with relative standard deviations less than 19.5%and relative recoveries ranging from 85.7 to 105.2%.In addition,the AYPBA labeled 20E produced abundant characteristic fragment ions under the high energy collision-induced dissociation,which facilitated the identif cation of 20E by MS^(2)analysis on MALDI-TOF/TOF MS.Using the method,we enabled the identif cation and quantif cation of endogenous 20E in four herbs including Cyanotis arachoidea,Achyranthes bidentata,Spinacia oleracea and Chenopodium quinoa willd.,demonstrating the feasibility of the proposed method for screening of the endogenous 20E in plants. 展开更多
关键词 Matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry 20-HYDROXYECDYSONE Chemical labeling boronate affinity
原文传递
Targeted and intracellular delivery of protein therapeutics by a boronated polymer for the treatment of bone tumors 被引量:1
7
作者 Yang Yan Lei Zhou +2 位作者 Zhengwang Sun Dianwen Song Yiyun Cheng 《Bioactive Materials》 SCIE 2022年第1期333-340,共8页
The treatment of malignant bone tumors by chemotherapeutics often receives poor therapeutic response due to the specific physiological bone environment,and thus calls for the development of new therapeutic options.Her... The treatment of malignant bone tumors by chemotherapeutics often receives poor therapeutic response due to the specific physiological bone environment,and thus calls for the development of new therapeutic options.Here,we reported a bone-targeted protein nanomedicine for this purpose.Saporin,a toxin protein,was co-assembled with a boronated polymer for intracellular protein delivery,and the formed nanoparticles were further coated with an anionic polymer poly(aspartic acid)to shield the positive charges on nanoparticles and provide the bone targeting function.The prepared ternary complex nanoparticles showed high bone accumulation both in vitro and in vivo,and could reverse the surface charge property from negative to positive after locating at tumor site triggered by tumor extracellular acidity.The boronated polymer in the de-shielded nanoparticles further promote intracellular delivery of saporin into tumor cells,exerting the anticancer activity of saporin by inactivation of ribosomes.As a result,the bone-targeted and saporin-loaded nanomedicine could kill cancer cells at a low saporin dose,and efficiently prevented the progression of osteosarcoma xenograft tumors and bone metastatic breast cancer in vivo.This study provides a facile and promising strategy to develop protein-based nanomedicines for the treatment of malignant bone tumors. 展开更多
关键词 boronated polymer DENDRIMERS Intracellular protein delivery Bone targeting Cancer therapy
原文传递
New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation
8
作者 Qipeng Bao Lei Guo +4 位作者 Hong Yong Sohn Haibin Zuo Feng Liu Yongliang Gao Zhancheng Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期473-484,共12页
Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.Th... Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed. 展开更多
关键词 LUDWIGITE boron-bearing iron concentrate flash reduction melting separation BORON
下载PDF
A boronate affinity restricted-access material with external hydrophilic bottlebrush polymers for pretreatment of cis-diols in biological matrices 被引量:2
9
作者 Huanhuan Xu Chaozhan Wang Yinmao Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期521-523,共3页
Restricted-access materials (RAMs) have found their broad application in sample pretreatment of bioanalysis. Boronate affinity (BA) adsorption is a very efficient and facile method for isolation and enrichment of ... Restricted-access materials (RAMs) have found their broad application in sample pretreatment of bioanalysis. Boronate affinity (BA) adsorption is a very efficient and facile method for isolation and enrichment of cis-diol containing biomolecules which are a large important group compounds in biosystems. However, preparation of BA-RAMs are rarely reported to date. In this study, a novel BA-RAM with external surface comprised of hydrophilic bottlebrush polymers was prepared exploiting the excellent capability of the bottlebrush polymers for protein exclusion. A diblock copolymer poly(3- acrylamidophenylboronic acid)-block-poly(2-hydroxyethyl methacrylate) (PAAPBA-b-PHEMA) was first grafted from the silica surface via surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT), and poly(N-isopropylacrylamide) (PNIPAAm) was then grafted from the PHEMA via surface-initiated atom transfer radical polymerization (SI-ATRP) to yield the BA-RAM. The BA- RAM exhibits high selectivity to cis-diol containing small molecules and has good capability to exclude proteins. Its practical application in bioanalysis was tested by pretreatment of serum sample for analysis of catecholamines with high recoveries and good precision. The preparation strategy for the BA-RAM is very versatile and is easy to be expanded to other modes of RAMs. 展开更多
关键词 Restricted-access material boronate affinity cis-Diol Bioanalysis Bottlebrush polymer
原文传递
Stability and melting behavior of boron phosphide under high pressure
10
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide STABILITY melting curve high pressure
下载PDF
Spark Plasma Sintering of Boron Carbide Using Ti_(3)SiC_(2) as a Sintering Additive
11
作者 Hülya Biçer Mustafa Tuncer +3 位作者 Hasan Göçmez Iurii Bogomol Valerii Kolesnichenko Andrey Ragulya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期645-650,共6页
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide... Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness. 展开更多
关键词 reactive sintering SPS boron carbide MAX phase
下载PDF
Effects of BN on the Mechanical and Thermal Properties of PP/BN Composites
12
作者 陈厚振 王艳芝 +4 位作者 NAN Yu WANG Xu YUE Xianyang ZHANG Yifei FAN Huiling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期345-352,共8页
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul... In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one. 展开更多
关键词 thermal properties POLYPROPYLENE COMPOSITES hexagonal boron nitride
下载PDF
Coated boron layers by boronization and a real-time boron coating using an impurity powder dropper in the LHD
13
作者 Naoko ASHIKAWA Robert LUNSFORD +4 位作者 Federico NESPOLI Erik GILSON Yaowei YU Jiansheng HU Shinichiro KADO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期25-31,共7页
In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is unde... In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is under evaluation as a real-time wall conditioning technique.In the LHD,which is a large-sized heliotron device,an additional helium(He)glow discharge cleaning(GDC)after boronization was operated for a reduction in hydrogen recycling from the coated boron layers.This operational time of 3 h was determined by spectroscopic data during glow discharges.A flat hydrogen profile is obtained on the top surface of the coated boron on the specimen exposed to boronization.The results suggest a reduction in hydrogen at the top surface by He-GDC.Trapped oxygen in coated boron was obtained by boronization,and the coated boron,which has boron-oxide,on the first wall by B-IPD was also shown.Considering the difference in coating areas between B2H6 boronization and B-IPD operation,it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning. 展开更多
关键词 boron layer oxygen impurity hydrogen recycling impurity powder dropper LHD EAST
下载PDF
Anti-aging performance improvement and enhanced combustion efficiency of boron via the coating of PDA
14
作者 Shuai Ma Qinghai Shu +4 位作者 Mengyang Zhang Hongyu Huang Yansong Shi Xijuan Lv Shuai Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期399-410,共12页
Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced in... Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites. 展开更多
关键词 Boron particles POLYDOPAMINE Anti-aging performance improvement Heat release
下载PDF
Coaxial Wet Spinning of Boron Nitride Nanosheet‑Based Composite Fibers with Enhanced Thermal Conductivity and Mechanical Strength
15
作者 Wenjiang Lu Qixuan Deng +3 位作者 Minsu Liu Baofu Ding Zhiyuan Xiong Ling Qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期126-138,共13页
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni... Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs. 展开更多
关键词 Boron nitride nanosheets Coaxial fiber Interfacial compression Nanosheet aligning Wearable thermal management
下载PDF
Targeting the organelle for radiosensitization in cancer radiotherapy
16
作者 Xiaoyan Sun Linjie Wu +2 位作者 Lina Du Wenhong Xu Min Han 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期52-71,共20页
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation ene... Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment. 展开更多
关键词 Cancer radiotherapy Organelle-target RADIOSENSITIZATION Boron neutron capture therapy NANOMEDICINES
下载PDF
Synthesis of boron nitride nanorod and its performance as a metalfree catalyst for oxidative desulfurization of diesel fuel
17
作者 Tanaz Ghanadi Gholamreza Moradi Alimorad Rashidi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期120-132,共13页
In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by hea... In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process. 展开更多
关键词 DESULFURIZATION Boron nitride(BN)nanostructure Experimental design BoxeBehnken
下载PDF
Preparation and properties of high-energy-density aluminum/boroncontaining gelled fuels
18
作者 Yi Chen Kang Xue +3 位作者 Yang Liu Lun Pan Xiangwen Zhang Ji-Jun Zou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期230-242,共13页
Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this... Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants. 展开更多
关键词 Gelled fuels Energetic aluminum/boron Low-molecular-mass organic gellant Fuel property
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation
19
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride Thermal conductivity Electrical insulation
下载PDF
Coupling Au with BO_(x) matrix induced by Closo-boron cluster for electrochemical synthesis of ammonia
20
作者 Wenjing Liu Nan Yang +10 位作者 Yuao Wei Yingjie Yu Jie Chen Mo Wei Yuting Huang Xiaohan Li Linghai Zhang Faisal Saleem Weina Zhang Haibo Zhang Fengwei Huo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期471-477,I0012,共8页
Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pos... Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents. 展开更多
关键词 Boron clusters Nitrogen reduction reaction Au–B coupling
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部