期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
耦合人工神经网络模型在径流预测中的应用综述
1
作者 王语浠 曹青 SHAO Quanxi 《海洋气象学报》 2024年第3期152-161,共10页
人工神经网络(artificial neural network,ANN)模型耦合其他模型或优化算法在径流预测中的应用逐渐增多。从人工神经网络模型与物理模型的耦合、多人工神经网络模型的耦合、分解技术与机器学习方法的耦合、人工神经网络模型与智能优化... 人工神经网络(artificial neural network,ANN)模型耦合其他模型或优化算法在径流预测中的应用逐渐增多。从人工神经网络模型与物理模型的耦合、多人工神经网络模型的耦合、分解技术与机器学习方法的耦合、人工神经网络模型与智能优化算法的耦合4个方面进行系统梳理和总结,阐述提高预测精度的原因及各方法的优势。同时,提出当前研究中存在的问题并进行展望,可为径流预测和水资源管理提供支持。 展开更多
关键词 径流预测 反向传播(bp)神经网络模型 循环神经网络(RNN)模型 长短期记忆(LSTM)神经网络模型 门控循环单元(GRU)神经网络模型 卷积神经网络(CNN)模型
下载PDF
基于BP神经网络模型的呼出气δ^(13)C、δ^(18)O同位素丰度测量方法研究
2
作者 黄文彪 夏滑 +4 位作者 王前进 孙鹏帅 庞涛 吴边 张志荣 《光谱学与光谱分析》 SCIE EI CAS 2024年第10期2761-2767,共7页
碳13(^(13)C)尿素呼气试验在国内外作为检测幽门螺旋杆菌的“金标准”已被广泛采用,精准测量CO_(2)中碳(C)和氧(O)同位素特征对疾病诊断具有重大意义。可调谐半导体激光吸收光谱技术(TDLAS)具有结构简单、响应速度快、灵敏度高等众多优... 碳13(^(13)C)尿素呼气试验在国内外作为检测幽门螺旋杆菌的“金标准”已被广泛采用,精准测量CO_(2)中碳(C)和氧(O)同位素特征对疾病诊断具有重大意义。可调谐半导体激光吸收光谱技术(TDLAS)具有结构简单、响应速度快、灵敏度高等众多优点,在多个领域得到广泛应用,同时完全适用于气体同位素的测量研究。该研究面向人体呼出气体中的CO_(2)气体检测需求,基于直接吸收光谱技术,采用中心波长为4.32μm的量子级联激光器(QCL)结合光程为14 cm/44 mL的小容积气体吸收腔体,完成了同时测量^(16)O^(12)C^(16)O、^(18)O^(12)C^(16)O和^(16)O^(13)C^(16)O的多组分同位素气体浓度的实验系统。基于反向传播(BP)神经网络模型,降低直接吸收光谱系统中光源稳定性和测量样品气体波动带来的噪声干扰。结果表明:基于BP神经网络模型的同位素丰度测量精度与稳定性均优于吸光度峰值比法,^(16)O^(13)C^(16)O与^(18)O^(12)C^(16)O的浓度测量精度分别提高约1.27与1.58倍。Allan方差分析表明,当积分时间为106 s时,采用BP神经网络模型的^(13)C与^(18)O同位素丰度测量精度分别为0.97‰和1.47‰,相比吸光度峰值比法测量精度提高了约2.1倍与1.2倍。充分证明了基于BP神经网络模型的同位素丰度测量方法的可行性,为研制高精度同位素丰度传感器奠定基础。 展开更多
关键词 可调谐半导体激光吸收光谱技术(TDLAS) 量子级联激光器(QCL) 反向传播(bp)神经网络模型 同位素丰度
下载PDF
基于RGB模型的草莓叶片光合作用指标估测
3
作者 樊小雪 李德翠 +1 位作者 李远 任妮 《江苏农业学报》 CSCD 北大核心 2024年第4期675-681,共7页
为了研究基于图像红(R)、绿(G)、蓝(B)颜色参数和叶片SPAD值预测光合作用指标的可行性,以草莓叶片为试验材料,构建多元线性回归模型和反向传播(BP)神经网络模型,对叶片蒸腾速率、气孔导度、净光合速率、胞间CO_(2)浓度进行估测,并对其... 为了研究基于图像红(R)、绿(G)、蓝(B)颜色参数和叶片SPAD值预测光合作用指标的可行性,以草莓叶片为试验材料,构建多元线性回归模型和反向传播(BP)神经网络模型,对叶片蒸腾速率、气孔导度、净光合速率、胞间CO_(2)浓度进行估测,并对其精度进行评价和验证。结果表明,基于BP神经网络模型,使用图像RGB颜色参数和SPAD值对叶片蒸腾速率进行预测的效果较好,其次是气孔导度。BP神经网络模型的估测精度高于多元线性回归模型,蒸腾速率、气孔导度、净光合速率和胞间CO_(2)浓度的模型预测准确率分别达到91.5%、83.3%、74.4%和71.5%。BP神经网络的蒸腾速率模型、气孔导度模型的决定系数(R2)分别为0.9222、0.8423,均方根误差(RMSE)分别为0.0002、0.0259,平均绝对误差(MAE)分别为0.0001、0.0006。由结果可知,通过数码相机采集图像,并构建RGB模型,可简易快速估测草莓叶片蒸腾速率、气孔导度,能用于生产中草莓光合指标的估测。 展开更多
关键词 草莓叶片 RGB模型 光合指标 反向传播(bp)神经网络模型
下载PDF
基于KPCA-SSA-BP的农业气象灾害预测 被引量:3
4
作者 李思宇 李玥 《江苏农业学报》 CSCD 北大核心 2023年第6期1366-1371,共6页
农业气象灾害对农业发展有很大阻碍,为优化农业气象灾害预测的估算模型,本研究以山东省作为研究区域,利用核主成分分析(KPCA)对影响因子进行降维,以传统反向传播(BP)神经网络模型为基础,基于麻雀搜索算法(SSA)、粒子群算法(PSO)、遗传算... 农业气象灾害对农业发展有很大阻碍,为优化农业气象灾害预测的估算模型,本研究以山东省作为研究区域,利用核主成分分析(KPCA)对影响因子进行降维,以传统反向传播(BP)神经网络模型为基础,基于麻雀搜索算法(SSA)、粒子群算法(PSO)、遗传算法(GA)3种优化算法,构建了SSA-BP、PSO-BP、GA-BP 3种优化模型。结果表明,在旱灾受灾率的模型评价指标对比中,发现与传统BP神经网络模型相比,SSA-BP、PSO-BP、GA-BP神经网络模型的均方根误差(RMSE)分别下降23.55%、12.28%和17.74%;在洪灾受灾率的模型评价对比中,发现与传统BP神经网络模型相比,SSA-BP、PSO-BP、GA-BP神经网络模型的RMSE分别下降了29.96%、9.49%和13.88%。说明SSA-BP神经网络模型对旱灾受灾率、洪灾受灾率的预测效果优于传统BP神经网络模型以及PSO-BP、GA-BP优化的神经网络模型。 展开更多
关键词 农业气象灾害 核主成分分析(KPCA) 反向传播(bp)神经网络模型 麻雀搜索算法 粒子群算法 遗传算法
下载PDF
Study on Remote Sensing of Water Depths Based on BP Artificial Neural Network 被引量:4
5
作者 王艳姣 张培群 +1 位作者 董文杰 张鹰 《Marine Science Bulletin》 CAS 2007年第1期26-35,共10页
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land... A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters. 展开更多
关键词 Yangtze River Estuary bp neural network water-depth remote sensing retrieval model
下载PDF
Application of BP neural network model with fuzzy optimization in retrieval of biomass parameters 被引量:1
6
作者 陈守煜 郭瑜 《Agricultural Science & Technology》 CAS 2005年第2期7-11,共5页
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net... The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound. 展开更多
关键词 ANN bp model biomass parameters RETRIEVAL
下载PDF
垃圾回收路径优化的经济性分析——以成都市为例
7
作者 赵凯芳 陈秋婷 郭睿嫚 《中国资源综合利用》 2024年第8期183-185,共3页
成都市是我国新一线城市,近年来,随着社会经济的快速发展,垃圾产生量大幅度增加。优化垃圾回收路径对于城市的可持续发展至关重要。以成都市为例,结合垃圾分类回收现状,运用灰色模型及反向传播(Back Propagation,BP)神经网络模型预测垃... 成都市是我国新一线城市,近年来,随着社会经济的快速发展,垃圾产生量大幅度增加。优化垃圾回收路径对于城市的可持续发展至关重要。以成都市为例,结合垃圾分类回收现状,运用灰色模型及反向传播(Back Propagation,BP)神经网络模型预测垃圾产生量,通过最小生成树模型规划最优路径,运用物联网技术提高运输周转效率,实现零库存。随着垃圾回收路径的优化,成都市可以更好地实现资源利用和环境保护的双重红利。 展开更多
关键词 垃圾回收路径优化 经济性分析 灰色模型 反向传播(Back Propagation bp)神经网络模型 最小生成树
下载PDF
Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons 被引量:13
8
作者 Guo-zheng QUAN Pu ZHANG +3 位作者 Yao-yao MA Yu-qing ZHANG Chao-long LU Wei-yong WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第9期2435-2448,共14页
In order to deeply understand the grain growth behaviors of Ni80A superalloy,a series of grain growth experiments were conducted at holding temperatures ranging from 1223 to 1423 K and holding time ranging from 0 to 3... In order to deeply understand the grain growth behaviors of Ni80A superalloy,a series of grain growth experiments were conducted at holding temperatures ranging from 1223 to 1423 K and holding time ranging from 0 to 3600 s.A back-propagation artificial neural network(BP-ANN)model and a Sellars model were solved based on the experimental data.The prediction and generalization capabilities of these two models were evaluated and compared on the basis of four statistical indicators.The results show that the solved BP-ANN model has better performance as it has higher correlation coefficient(r),lower average absolute relative error(AARE),lower absolute values of mean value(μ)and standard deviation(ω).Eventually,a response surface of average grain size to holding temperature and holding time is constructed based on the data expanded by the solved BP-ANN model,and the grain growth behaviors are described. 展开更多
关键词 grain growth model bp artificial neural network Sellars model average grain size
下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
9
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-bp hybrid algorithm IMPACT energy-absorption characteristic FORECAST
下载PDF
Coal mine safety production forewarning based on improved BP neural network 被引量:38
10
作者 Wang Ying Lu Cuijie Zuo Cuiping 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期319-324,共6页
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method... Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production. 展开更多
关键词 Improved PSO algorithm bp neural network Coal mine safety production Early warning
下载PDF
Mountain ground movement prediction caused by mining based on BP-neural network 被引量:3
11
作者 ZHANG He-sheng LIU Li-juan LIU Hong-fu 《Journal of Coal Science & Engineering(China)》 2011年第1期12-15,共4页
Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by th... Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by the MATLAB software package to select the surface movement and deformation parameters. On this basis, the paper built a BP neural network model that takes the six main influencing factors as input data and corresponding value of ground subsidence as output data. Ground subsidence of the 3406 mining face in Haoyu Coal was predicted by the trained BP neural network. By comparing the prediction and the practices, the research shows that it is feasible to use the 13P neural network to predict mountain mining subsidence. 展开更多
关键词 bp neural network mountain regions mining subsidence Grey theory
下载PDF
Soft Sensor for Ammonia Concentration at the Ammonia Converter Outlet Based on an Improved Group Search Optimization and BP Neural Network 被引量:5
12
作者 阎兴頔 杨文 +1 位作者 马贺贺 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1184-1190,共7页
The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the produc... The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the production efficiency. However, it is hard to be measured reliably online in real applications. In this paper, a soft sensor based on BP neural network (BPNN) is applied to estimate the ammonia concentration. A modified group search optimization with nearest neighborhood (GSO-NH) is proposed to optimize the weights and thresholds of BPNN. GSO-NH is integrated with BPNN to build a soft sensor model. Finally, the soft sensor model based on BPNN and GSO-NH (GSO-NH-NN) is used to infer the outlet ammonia concentration in a real-world application. Three other modeling methods are applied for comparison with GSO-NH-NN. The results show that the soft sensor based on GSO-NH-NN has a good prediction performance with high accuracy. Moreover, the GSO-NH-NN also provides good generalization ability to other modeling problems in ammonia synthesis production. 展开更多
关键词 ammonia synthesis ammonia concentration soft sensor group search optimization
下载PDF
Development of a spontaneous combustion TARPs system based on BP neural network 被引量:7
13
作者 Wang Longkang Ren Tingxiang +4 位作者 Nie Baisheng Chen Yang Lv Changqing Tang Haoyang Zhang Jufeng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期803-810,共8页
Spontaneous combustion of coal is a major cause of coal mine fires.It not only poses a severe hazard to the safe extraction of coal resources,but also jeopardizes the safety of mine workers.The development of a scient... Spontaneous combustion of coal is a major cause of coal mine fires.It not only poses a severe hazard to the safe extraction of coal resources,but also jeopardizes the safety of mine workers.The development of a scientific management system of coal spontaneous combustion is of vital importance to the safe production of coal mine.This paper provides a comparative analysis of a range of worldwide prediction techniques and methods for coal spontaneous combustion,and systematically introduces the trigger action response plans(TARPs)system used in Australian coal mines for managing the spontaneous heating of coal.An artificial neural network model has been established on the basis of real coal mine operational conditions.Through studying and training the neural network model,prediction errors can be controlled within the allowable range.The trained model is then applied to the conditions of Nos.1 and 3 coal seams located in Weijiadi Coal Mine to demonstrate its feasibility for spontaneous combustion assessment.Based upon the TARPs system which is commonly used in Australian longwall mines,a TARPs system has been developed for Weijiadi Coal Mine to assist the management of spontaneous combustion hazard and ensure the safe operation of its mining activities. 展开更多
关键词 Neural network Coal spontaneous combustion TARPs Safety management
下载PDF
Research on BP-ANN Model of Semi-rigid Connection
14
作者 Jian Liu Xiangyun Huang +3 位作者 Guangen Zhou Jiping Hao Da Ren Yue Gao 《Journal of Civil Engineering and Architecture》 2012年第3期385-389,共5页
The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by i... The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by its moment-rotation relationship. Several traditional mathematical models have been proposed to fit the moment-rotation curves from the experimental database,but they may be more reliable within certain ranges. In this paper, the intellectualized analytical model is proposed in the semirigid connections for top and seat angles with double web angles using the feed-forward back-propagation artificial neural network (BP-ANN) technique. the intellectualized analytical model from experimental results based on BP-ANN is more reliable and it is a better choice to the moment-rotation curves for beam-to-column semirigid connection. The results are found to provide effectiveness to the experimental response that is satisfactory for use in steel structural engineering design. 展开更多
关键词 beam-to-column joint semirigid connection intellectualized analytical model artificial neural network.
下载PDF
基于网络动态重构的配电系统优化调度方法研究
15
作者 李小伟 陈楚 《电气自动化》 2022年第1期85-87,91,共4页
为解决配电系统中网络资源利用率低、网络损耗大的问题,设计了一套配电系统对配电网进行动态重构,构建出改进型混沌进化算法模型以优化网络配置。改进型混沌进化算法模型融合反向传播(back propagation,BP)神经网络算法模型,通过混沌进... 为解决配电系统中网络资源利用率低、网络损耗大的问题,设计了一套配电系统对配电网进行动态重构,构建出改进型混沌进化算法模型以优化网络配置。改进型混沌进化算法模型融合反向传播(back propagation,BP)神经网络算法模型,通过混沌进化算法模型对重构后的配电系统进行优化,通过BP神经网络算法模型提高优化的精度,结果提高了配电系统优化调度能力。试验结果表明,提高了优化能力和网络资源利用率,降低了网络能耗。 展开更多
关键词 网络资源 配电系统 混沌进化算法模型 反向传播(bp)神经网络算法模型 网络能耗
下载PDF
大型储罐声发射技术下的安全评价方法 被引量:5
16
作者 宋高峰 张延兵 +2 位作者 孙培培 沈硕勋 王志荣 《中国安全科学学报》 CAS CSCD 北大核心 2020年第3期60-66,共7页
为探究腐蚀声发射信号相关参数的变化特征,以常见的立式金属储罐为对象开展试验,研究储罐腐蚀声发射源特性,建立基于反向传播(BP)神经网络的安全评价模型,并开展应用实例研究。结果表明:声发射活性和强度会随着腐蚀反应的剧烈程度发生变... 为探究腐蚀声发射信号相关参数的变化特征,以常见的立式金属储罐为对象开展试验,研究储罐腐蚀声发射源特性,建立基于反向传播(BP)神经网络的安全评价模型,并开展应用实例研究。结果表明:声发射活性和强度会随着腐蚀反应的剧烈程度发生变化,且在腐蚀活性不同时期腐蚀信号的波形表现出连续型、突发型和混合型3种特征,频率主要集中在20~60 kHz;BP神经网络模型输出结果与实际评价结果一致,证明该方法具有一定的有效性。 展开更多
关键词 大型储罐 腐蚀信号 声发射活性及强度 声发射检测 反向传播(bp)神经网络模型
下载PDF
TIME SERIES NEURAL NETWORK MODEL FOR HYDROLOGIC FORECASTING 被引量:4
17
作者 钟登华 刘东海 Mittnik Stefan 《Transactions of Tianjin University》 EI CAS 2001年第3期182-186,共5页
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced... Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible. 展开更多
关键词 hydrologic forecasting time series neural network model back propagation
下载PDF
W颗粒增强Ti基金属−金属复合材料的准静态和动态力学行为
18
作者 李谋 周睿 +3 位作者 杜萌 曹远奎 刘彬 刘咏 《中国有色金属学报》 EI CAS CSCD 北大核心 2022年第1期66-75,共10页
Ti基金属−金属复合材料具有良好的强度和塑性等综合性能。采用扫描电子显微术(SEM)、X射线衍射(XRD)、材料力学性能试验、分离式霍普金森压杆(SHPB)、MATALAB软件等分析技术研究了W颗粒增强Ti基金属−金属复合材料(Ti-W)在准静态和动态... Ti基金属−金属复合材料具有良好的强度和塑性等综合性能。采用扫描电子显微术(SEM)、X射线衍射(XRD)、材料力学性能试验、分离式霍普金森压杆(SHPB)、MATALAB软件等分析技术研究了W颗粒增强Ti基金属−金属复合材料(Ti-W)在准静态和动态下的力学行为。结果表明:Ti-W复合材料具有β-Ti相和β-W相组成的双相异质结构;当W元素含量大于25%(摩尔分数)时,组织中析出细小的富W相。Ti-W复合材料在准静态下的最高屈服强度和极限强度可达1567 MPa(Ti-30W)和1726 MPa(Ti-30W);动态下最高屈服强度和极限强度可达2148 MPa(Ti-15W)和2908 MPa(Ti-30W)。因此,Ti-W复合材料具有明显的应变速率强化效应。比较了改进的Johnson-Cook(JC)本构模型和Back-Propagation(BP)神经网络模型对Ti-W复合材料力学行为的适用性,发现BP神经网络能更好地描述Ti-W复合材料在准静态和动态下的力学行为。 展开更多
关键词 Ti-W金属−金属复合材料 应变速率强化 Johnson-Cook(JC)本构模型 Back-Propagation(bp)神经网络模型
下载PDF
SVM model for estimating the parameters of the probability-integral method of predicting mining subsidence 被引量:11
19
作者 ZHANG Hua WANG Yun-jia LI Yong-feng 《Mining Science and Technology》 EI CAS 2009年第3期385-388,394,共5页
A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improv... A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction.Many of the geological and mining factors involved are related in a nonlinear way.The new model is based on statistical theory(SLT) and empirical risk minimization(ERM) principles.Typical data collected from observation stations were used for the learning and training samples.The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network(BPNN) model.The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model.The LS-SVM model was faster in computation and had better generalized performance.It provides a highly effective method for calculating the predicting parameters of the probability-integral method. 展开更多
关键词 mining subsidence probability-integral method least squares support vector machine artificial neural networks
下载PDF
Regression model for daily passenger volume of high-speed railway line under capacity constraint 被引量:2
20
作者 骆泳吉 刘军 +1 位作者 孙迅 赖晴鹰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3666-3676,共11页
A non-linear regression model is proposed to forecast the aggregated passenger volume of Beijing-Shanghai high-speed railway(HSR) line in China. Train services and temporal features of passenger volume are studied to ... A non-linear regression model is proposed to forecast the aggregated passenger volume of Beijing-Shanghai high-speed railway(HSR) line in China. Train services and temporal features of passenger volume are studied to have a prior knowledge about this high-speed railway line. Then, based on a theoretical curve that depicts the relationship among passenger demand, transportation capacity and passenger volume, a non-linear regression model is established with consideration of the effect of capacity constraint. Through experiments, it is found that the proposed model can perform better in both forecasting accuracy and stability compared with linear regression models and back-propagation neural networks. In addition to the forecasting ability, with a definite formation, the proposed model can be further used to forecast the effects of train planning policies. 展开更多
关键词 high-speed rail Jinghu high-speed railway(HSR) DEMAND capacity forecasting
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部