Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance ...Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance and differentiation,inhibiting canonical autophagy via deletion of core genes,such as Atg5,Atg16l1,and Atg7,or blockade of canonical interactions between FIP200 and ATG13(designated as FIP200-4A mutant or FIP200 KI)does not produce comparable detrimental effects.This highlights the likely critical involvement of the non-canonical functions of FIP200,the mechanisms of which have remained elusive.Here,utilizing genetic mouse models,we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1,primarily via TAX1BP1 in NSCs.Conditional deletion of Tax1bp1 in fip200hGFAP conditional knock-in(cKI)mice led to NSC deficiency,resembling the fip200hGFAP conditional knockout(cKO)mouse phenotype.Notably,reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation.Conversely,a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration.Furthermore,conditional deletion of Tax1bp1 in fip200hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200hGFAP cKO mice.Collectively,these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function,presenting novel therapeutic targets for neurodegenerative diseases.展开更多
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i...Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors.展开更多
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land...A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters.展开更多
To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagatio...To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagation) neural network. The BP neural network was trained separately by the three functions, trainbr, traingdm and trainlm, in order to identify the concentration of mixed pernicious gases composed of ammonia gas and hepatic gas. The neural network toolbox in MATLAB software was used to simulate the detection. The results showed that the neural network trained by trainbr function has high average identification accuracy and faster detection speed, and it is also insensitive to noise; therefore, it is suitable to identify the concentration of pemidous gases in pig house. These data provide a reference for intelligent monitoring of pemicious gases in pigsty.展开更多
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad...The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy.展开更多
Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. First...Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.展开更多
基金National Natural Science Foundation of China(U2004138,81773132,81820108021)University Excellent Teaching Team of“Qinglan Project”in Jiangsu Province(2022-25)+1 种基金Henan Province Key Research and Development Project(232102521028)Excellent Youth Foundation of Henan Scientific Committee(21230040016)。
文摘Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance and differentiation,inhibiting canonical autophagy via deletion of core genes,such as Atg5,Atg16l1,and Atg7,or blockade of canonical interactions between FIP200 and ATG13(designated as FIP200-4A mutant or FIP200 KI)does not produce comparable detrimental effects.This highlights the likely critical involvement of the non-canonical functions of FIP200,the mechanisms of which have remained elusive.Here,utilizing genetic mouse models,we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1,primarily via TAX1BP1 in NSCs.Conditional deletion of Tax1bp1 in fip200hGFAP conditional knock-in(cKI)mice led to NSC deficiency,resembling the fip200hGFAP conditional knockout(cKO)mouse phenotype.Notably,reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation.Conversely,a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration.Furthermore,conditional deletion of Tax1bp1 in fip200hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200hGFAP cKO mice.Collectively,these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function,presenting novel therapeutic targets for neurodegenerative diseases.
基金Xi'an Municipal Bureau of Science and Technology,Science and Technology Program,Medical Research Project。
文摘Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors.
基金the Key Program of National Natural Science Foundation (Project No.50339010) the Huaihe Valley 0pen Fund Project (No.Hx2007).
文摘A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters.
文摘To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagation) neural network. The BP neural network was trained separately by the three functions, trainbr, traingdm and trainlm, in order to identify the concentration of mixed pernicious gases composed of ammonia gas and hepatic gas. The neural network toolbox in MATLAB software was used to simulate the detection. The results showed that the neural network trained by trainbr function has high average identification accuracy and faster detection speed, and it is also insensitive to noise; therefore, it is suitable to identify the concentration of pemidous gases in pig house. These data provide a reference for intelligent monitoring of pemicious gases in pigsty.
基金Supported by Key Science and Technology Program of Shanxi Province,China(002023)~~
文摘The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy.
文摘Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.