A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special tec...A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.展开更多
A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex...A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.展开更多
文摘A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.
文摘A class of general inverse matrix techniques based on adaptive algorithmic modelling methodologies is derived yielding iterative methods for solving unsymmetric linear systems of irregular structure arising in complex computational problems in three space dimensions. The proposed class of approximate inverse is chosen as the basis to yield systems on which classic and preconditioned iterative methods are explicitly applied. Optimized versions of the proposed approximate inverse are presented using special storage (k-sweep) techniques leading to economical forms of the approximate inverses. Application of the adaptive algorithmic methodologies on a characteristic nonlinear boundary value problem is discussed and numerical results are given.