期刊文献+
共找到528,234篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
1
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response Related factors Prediction bp neural network
下载PDF
Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm
2
作者 Guilin Wu Shenghua Huang +7 位作者 Tingting Liu Zhuoni Yang Yuesong Wu Guihong Wei Peng Yu Qilin Zhang Jun Feng Bo Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2709-2725,共17页
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica... Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation. 展开更多
关键词 Finite element method 3D printing polymer esophageal stent artificial neural network
下载PDF
DNBP-CCA:A Novel Approach to Enhancing Heterogeneous Data Traffic and Reliable Data Transmission for Body Area Network
3
作者 Abdulwadood Alawadhi Mohd.Hasbullah Omar +3 位作者 Abdullah Almogahed Noradila Nordin Salman A.Alqahtani Atif M.Alamri 《Computers, Materials & Continua》 SCIE EI 2024年第5期2851-2878,共28页
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas... The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay. 展开更多
关键词 Internet of Medical Things body area networks backoff period tsk fuzzy model clear channel assessment media access control
下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network
4
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-bp neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
下载PDF
正交实验结合AHP和GA-BP神经网络优化益黄散醇提工艺 被引量:1
5
作者 王巍 杨武杰 +4 位作者 韩宇 安悦言 郝季 张强 鞠成国 《中国药房》 CAS 北大核心 2024年第3期327-332,共6页
目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法... 目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法(AHP)进行赋权并计算综合评分。通过验证正交实验和遗传算法(GA)-反向传播神经网络(BP神经网络)所预测的结果确定益黄散最佳醇提工艺参数。结果 正交实验优选的最佳醇提工艺参数为乙醇体积分数60%、液料比14∶1(mL/g)、提取时间90 min、提取2次,验证所得综合评分为79.19分;GA-BP神经网络优选的最佳醇提工艺参数为乙醇体积分数65%、液料比14∶1(mL/g)、提取时间60 min、提取2次,验证所得综合评分为85.30分,高于正交实验所得结果。结论 采用正交实验结合GA-BP神经网络的寻优方法较传统的正交实验寻优方法效果更佳,其优选出的益黄散最佳醇提工艺稳定可靠。 展开更多
关键词 益黄散 醇提工艺 正交实验 遗传算法 bp神经网络 层次分析法
下载PDF
基于BP神经网络的测量设备无关协议参数预测 被引量:1
6
作者 周江平 周媛媛 +1 位作者 周学军 李洁琼 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期611-616,共6页
针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,... 针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,从而获得更好的实时性和更低的计算复杂度,随后与基于随机森林和XGBoost的方法进行了比较。仿真结果表明,BP神经网络预测所得各参数的均方误差数量级为10^(-6)或更小,由该参数计算所得密钥生成率与最优密钥生成率比值的均值为0.998 8,且该应用中BP神经网络相对随机森林和XGBoost具有更好的预测性能。 展开更多
关键词 量子光学 量子密钥分发 bp神经网络 参数优化 测量设备无关
下载PDF
基于小波变换和GA-BP神经网络的电力电缆故障定位 被引量:2
7
作者 徐先峰 马志雄 +2 位作者 姚景杰 李芷菡 王轲 《电气工程学报》 CSCD 北大核心 2024年第2期146-155,共10页
由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程... 由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程度和波动次数的基础上,选择多贝西小波(Daubechies wavelet 6,Db6)作为小波基函数,对于各故障位置,采集正向故障行波的α模分量,并对其进行小波分解。选取在d1尺度下的模极大值点作为特征值,同时将故障距离作为标签值,从而构建了训练和测试样本数据集;利用遗传算法(Genetic algorithm,GA)的种群进化和全局最优搜寻能力来改善误差逆传播(Back propagation,BP)网络对初始权重敏感的缺点,并使用优化后的权值、阈值重新对BP神经网络进行训练和预测,最后通过与传统双端行波定位算法、BP算法、粒子群优化BP算法(Particle swarm optimization BP,PSO-BP)相比较,证明了所提方法在测距性能方面的优越性。 展开更多
关键词 小波变换 模极大值 双端测距 bp神经网络 PSO-bp神经网络 GA-bp神经网络
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
8
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) bp神经网络(bpNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
基于BP神经网络的九寨沟地区地震滑坡危险性预测研究 被引量:3
9
作者 张迎宾 徐佩依 +6 位作者 林剑锋 伍新南 柳静 相晨琳 何云勇 杨昌凤 许冲 《工程地质学报》 CSCD 北大核心 2024年第1期133-145,共13页
BP神经网络因具有良好的精度和拟合能力,被广泛地运用在区域性滑坡危险性预测中。本文建立了基于BP神经网络的地震滑坡危险性评价模型并应用于四川九寨沟地区,以2017年8月8日的九寨沟MS7.0地震引发的4834个历史滑坡为例,将其随机划分为... BP神经网络因具有良好的精度和拟合能力,被广泛地运用在区域性滑坡危险性预测中。本文建立了基于BP神经网络的地震滑坡危险性评价模型并应用于四川九寨沟地区,以2017年8月8日的九寨沟MS7.0地震引发的4834个历史滑坡为例,将其随机划分为70%的训练样本集用于九寨沟地区地震滑坡危险性预测,以及30%的验证样本集对预测结果的精度进行评估。选取高程、坡度、坡向、平行发震断层距离、垂直发震断层距离、震中距离、距道路距离、地面峰值加速度(PGA)以及岩性共9个影响因子,分析发震断层对地震滑坡的控制作用,并总结九寨沟地区地震滑坡空间分布规律特征,其中发震断层、岩性和坡度对九寨沟地区地震滑坡分布产生重要影响。利用模型得到九寨沟地震滑坡危险性预测图,结果显示73.19%的滑坡位于极高和高危险区域,与实际地震滑坡分布基本相符。通过30%的验证样本集来绘制预测成功率曲线,结果表明模型预测成功率(AUC值)为0.90,证实了BP神经网络在九寨沟地区地震滑坡危险性预测中具有良好的精度和拟合能力,评价结果为后续地震滑坡灾害预测和防震减灾工作提供了科学的参考。 展开更多
关键词 九寨沟地区 bp神经网络 地震滑坡 危险性评价
下载PDF
基于GRU-CNN双网络输出构建BP模型的径流预测方法 被引量:1
10
作者 张玥 姜中清 +2 位作者 周伊 周静姝 王宇露 《水力发电》 CAS 2024年第6期17-22,共6页
提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预... 提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预测。首先,构建GRU和CNN深度学习网络,同步输出2条径流预测序列;其次,在已知时段内,构建2条预测结果与实测值之间的多变量BP模型;最后,基于双网络输出预测值,通过确定的BP模型输出径流预测结果。经测试,该方法给预测时段提供了可靠的先验样本,高效学习了网络输出与真实值之间关系,预测精度显著提升。 展开更多
关键词 洪水预报 径流预测 双网络输出 GRU CNN bp神经网络
下载PDF
基于BP神经网络的高桩码头基桩损伤识别研究 被引量:1
11
作者 郑永来 肖飞 +1 位作者 潘坦博 韩雨莘 《建筑技术》 2024年第3期371-376,共6页
针对高桩码头基桩的损伤识别问题,基于BP神经网络开展了损伤定位研究。传统损伤定位方法在识别过程中受到人为主观因素的干扰,且对于只有一阶模态数据的情况定位效果有限。为克服这些问题,构建了不受人为因素影响的损伤定位神经网络,以... 针对高桩码头基桩的损伤识别问题,基于BP神经网络开展了损伤定位研究。传统损伤定位方法在识别过程中受到人为主观因素的干扰,且对于只有一阶模态数据的情况定位效果有限。为克服这些问题,构建了不受人为因素影响的损伤定位神经网络,以第三类损伤指标ULSC和δFC作为训练样本,实现了对基桩局部损伤的准确定位。在建立合理的高桩码头有限元模型的基础上,构建了基于BP神经网络的损伤定位模型,并使用ABAQUS模拟数据和实测振动信号数据进行训练和测试。实验结果表明,该神经网络模型具有较高的定位准确性和鲁棒性,在不同损伤工况和10%噪声水平下仍表现优异。 展开更多
关键词 bp神经网络 损伤识别 基桩损伤 健康监测
下载PDF
双循环背景下石化企业供应链韧性评价研究——基于AHP-BP方法 被引量:2
12
作者 赵丽洲 张宁峰 《辽宁石油化工大学学报》 CAS 2024年第1期89-96,共8页
随着环境不确定性的提高,中国石化企业供应链稳定性需求日渐攀升,供应链韧性评价已经成为判断石化企业风险应对能力的重要手段。基于双循环背景,通过构建石化企业供应链韧性评估指标体系,利用层次分析法和BP神经网络,对石化企业供应链... 随着环境不确定性的提高,中国石化企业供应链稳定性需求日渐攀升,供应链韧性评价已经成为判断石化企业风险应对能力的重要手段。基于双循环背景,通过构建石化企业供应链韧性评估指标体系,利用层次分析法和BP神经网络,对石化企业供应链韧性强度进行评估,确定了供应链韧性水平。结果表明,各石化企业的供应链韧性强度存在较大差异,供应链韧性整体水平偏低。在研究结果的基础上,对韧性供应链锻造提出了切实可行的建议。 展开更多
关键词 石化企业 供应链韧性 层次分析法 bp神经网络算法
下载PDF
基于PSO-BP神经网络的分拣机器人视觉反馈跟踪 被引量:1
13
作者 杨静宜 白向伟 《国外电子测量技术》 2024年第1期166-172,共7页
针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信... 针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信息,建立分拣机器人运动学模型,并求解分拣机器人机械臂输出位置和输入位置的误差函数;利用PSO算法优化BP神经网络的权值与偏置;在权值与偏置优化后的BP神经网络内,输入误差函数,预测分拣机器人视觉反馈跟踪控制量;利用预测视觉反馈跟踪控制量,在线调整增量式比例-积分-微分(proportional-integral-derivative,PID)的参数,输出高精度的分拣机器人视觉反馈跟踪控制量,实现分拣机器人视觉反馈跟踪。实验结果表明,该方法可有效视觉反馈跟踪分拣机器人机械臂的关节角;存在干扰情况下,在运行时间为10 s左右时,阶跃响应趋于稳定;有干扰情况下,视觉反馈跟踪的平均误差为0.09 cm,耗时平均值为0.10 ms;无干扰情况下,平均误差为0.03 cm,耗时平均值为0.04 ms。 展开更多
关键词 PSO-bp神经网络 分拣机器人 视觉反馈跟踪 运动学模型 误差函数 增量式PID
下载PDF
基于拌和生产数据的BP神经网络混凝土抗压强度预测 被引量:1
14
作者 王海英 李子彤 +1 位作者 张英治 王晨光 《建筑科学与工程学报》 CAS 北大核心 2024年第3期18-25,共8页
为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立... 为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立200组混凝土拌和站生产监控数据和对应的抗压强度试验数据样本集,按照6∶2∶2比例划分为训练集、验证集和测试集;分别以C40配比混凝土拌和生产的8项物料称重数据和全部13项数据作为输入变量,进行混凝土28 d抗压强度预测,将预测结果与实际试验结果进行比较,验证所提出BP神经网络模型的预测效果。结果表明:所提出的BP神经网络混凝土强度预测模型能较好地实时预测混凝土28 d抗压强度,且相对误差优于利用7 d抗压强度试验数据估算值;8项物料称重数据作为输入变量的BP神经网络预测模型预测精度更好,平均绝对百分比误差为0.82%,均方根误差为0.52 MPa;利用不同拌和站C20配比、C30配比混凝土拌和生产监控数据对8项输入变量BP神经网络混凝土抗压强度预测模型进行适应性验证可知,其预测平均绝对误差均在0.5 MPa之内,平均绝对百分比误差均小于2%,与C40配比预测误差一致;该预测模型充分挖掘了混凝土拌和站生产实时监控数据的价值,实现了传统混凝土抗压试验结果提前化,对提高工程建设质量水平具有重要意义。 展开更多
关键词 混凝土 预测模型 bp神经网络 抗压强度 拌和生产监控数据
下载PDF
交通荷载下煤矸石路基填料累积变形PSO-BP神经网络预测模型 被引量:1
15
作者 张宗堂 肖天祥 +2 位作者 高文华 杨洋 衣利伟 《水利水电科技进展》 CSCD 北大核心 2024年第2期87-91,共5页
基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累... 基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累积变形PSO-BP神经网络预测模型。与传统BP神经网络模型对比结果验证了该预测模型的可行性和优越性,并通过不同学习程度下模型的预测效果分析了模型的泛化能力,证明了模型的预测潜力。 展开更多
关键词 煤矸石路基 累积变形预测 灰色关联分析 粒子群算法 bp神经网络
下载PDF
基于BP神经网络的陈皮干燥含水率预测 被引量:1
16
作者 王雷 钟康生 +1 位作者 胡书旭 肖波 《农机化研究》 北大核心 2024年第3期215-222,共8页
为探索陈皮的热泵干燥特性,并实现热泵干燥过程中陈皮的含水率预测,研究了不同干燥温度(50、55、60℃)、干燥风速(1.0、2.0、3.0m/s)、堆叠厚度(20、30、40mm)对陈皮干燥时间和干燥速率的影响。将干燥温度、干燥风速、堆叠厚度和干燥时... 为探索陈皮的热泵干燥特性,并实现热泵干燥过程中陈皮的含水率预测,研究了不同干燥温度(50、55、60℃)、干燥风速(1.0、2.0、3.0m/s)、堆叠厚度(20、30、40mm)对陈皮干燥时间和干燥速率的影响。将干燥温度、干燥风速、堆叠厚度和干燥时间作为输入层,隐藏层个数为10,陈皮的干燥含水率为输出层,搭建一个BP神经网络预测模型。研究结果表明:干燥温度、干燥风速和堆叠厚度都是影响陈皮干燥含水率的重要因素,提高干燥温度、增加干燥风速和减少堆叠厚度能够提高陈皮的干燥速率,缩短干燥时间。基于陈皮热泵干燥特性构建结构为“4-10-1”的BP神经网络模型,含水率预测值与实测值之间的均方误差MSE为0.00421,决定系数R^(2)=0.997,模型运行稳定,含水率预测结果准确且快速,能够为陈皮干燥过程中的含水率在线预测提供科学依据。 展开更多
关键词 热泵干燥 含水率预测 动力学 bp神经网络 陈皮
下载PDF
基于GA-BP神经网络模型预测水基炭黑-胶原蛋白纳米流体热导率和黏度
17
作者 李凯 魏鹤琳 +6 位作者 尹志凡 左夏华 于晓宇 尹宏远 杨卫民 阎华 安瑛 《化工进展》 EI CAS CSCD 北大核心 2024年第7期4138-4147,共10页
纳米流体由于其独特的强化传热性能,已广泛应用于各个领域。而热导率和黏度直接影响纳米流体在实际工程中的适用性,因此在考察纳米流体的强化传热特性前首先要分析研究其热导率和黏度。本研究利用炭黑和胶原蛋白,采用两步法制备了水基... 纳米流体由于其独特的强化传热性能,已广泛应用于各个领域。而热导率和黏度直接影响纳米流体在实际工程中的适用性,因此在考察纳米流体的强化传热特性前首先要分析研究其热导率和黏度。本研究利用炭黑和胶原蛋白,采用两步法制备了水基炭黑胶原蛋白纳米流体。实验分析了炭黑和胶原蛋白质量分数、温度对纳米流体热导率和黏度的影响。采用灰色关联方法对这些参数的权重进行了数学计算,基于实验数据建立了三输入两输出的BP神经网络预测模型,并利用遗传算法(GA)对BP模型进行优化。结果表明,遗传算法优化后的BP神经网络模型对预测输出具有更高的准确性和更好的稳定性,回归系数和最大偏差分别为0.99918和0.002。本研究不仅对于理解和控制水基炭黑-胶原蛋白纳米流体的热物理性能有重要意义,而且为工程设计和材料科学等方面的应用提供了新思路。 展开更多
关键词 纳米流体 炭黑 胶原蛋白 bp神经网络 热导率 黏度
下载PDF
基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究 被引量:1
18
作者 陈志鼎 李小龙 +2 位作者 李广聪 万山涛 董亿 《水电能源科学》 北大核心 2024年第2期67-71,共5页
为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法... 为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法,建立盾构推力、掘进速度、刀盘转速、刀盘扭矩4种掘进参数为输入集,地层编码为输出集的地层识别模型。工程数据的验证结果表明,该模型在珠三角水资源配置工程数据集上的掘进地层的识别准确率达99.07%,PSO-BP神经网络算法的识别准确率明显高于BP、RF、RBF、CNN等机械学习算法。 展开更多
关键词 泥水平衡盾构机 掘进参数 地层识别 PSO-bp神经网络
下载PDF
基于BP神经网络算法的异步电机故障诊断系统研究 被引量:1
19
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB bp神经网络 遗传算法 网络优化
下载PDF
基于BP神经网络的高校教师精准教学能力评价模型构建
20
作者 魏培文 朱珂 +3 位作者 叶海智 张潍杰 张利远 闫娟 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-116,共9页
通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能... 通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能力评价模型研究.首先,以理论研究为基础,对精准教学能力进行等级划分并构建评价指标框架,运用层级分析法建立指标权重;其次,利用BP神经网络智能学习的特性,以不同数据类型的指标值为输入,对应能力综合值为输出,检验精准教学能力分级及指标权重的合理性,进而生成较为客观的评价模型;最后,利用开发的评价系统和调查问卷进行样本数据采集和模型检验,从神经网络对数据的分类、拟合及仿真结果来看,模型能够对高校教师的精准教学能力进行客观评价,教师对模型测量结果的准确性也具有较高认可度. 展开更多
关键词 教育数字化转型 高校教师 精准教学能力 评价模型 bp神经网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部