Background:Supply chain finance(SCF)is a series of financial solutions provided by financial institutions to suppliers and customers facing demands on their working capital.As a systematic arrangement,SCF utilizes the...Background:Supply chain finance(SCF)is a series of financial solutions provided by financial institutions to suppliers and customers facing demands on their working capital.As a systematic arrangement,SCF utilizes the authenticity of the trade between(SMEs)and their“counterparties”,which are usually the leading enterprises in their supply chains.Because in these arrangements the leading enterprises are the guarantors for the SMEs,the credit levels of such counterparties are becoming important factors of concern to financial institutions’risk management(i.e.,commercial banks offering SCF services).Thus,these institutions need to assess the credit risks of the SMEs from a view of the supply chain,rather than only assessing an SME’s repayment ability.The aim of this paper is to research credit risk assessment models for SCF.Methods:We establish an index system for credit risk assessment,adopting a view of the supply chain that considers the leading enterprise’s credit status and the relationships developed in the supply chain.Furthermore,We conducted two credit risk assessment models based on support vector machine(SVM)technique and BP neural network respectly.Results:(1)The SCF credit risk assessment index system designed in this paper,which contained supply chain leading enterprise’s credit status and cooperative relationships between SMEs and leading enterprises,can help banks to raise their accuracy on predicting a small and medium enterprise whether default or not.Therefore,more SMEs can obtain loans from banks through SCF.(2)The SCF credit risk assessment model based on SVM is of good generalization ability and robustness,which is more effective than BP neural network assessment model.Hence,Banks can raise the accuracy of credit risk assessment on SMEs by applying the SVM model,which can alleviate credit rationing on SMEs.Conclusions:(1)The SCF credit risk assessment index system can solve the problem of banks incorrectly labeling a creditworthy enterprise as a default enterprise,and thereby improve the credit rating status in the process of SME financing.(2)By analyzing and comparing the empirical results,we find that the SVM assessment model,on evaluating the SME credit risk,is more effective than the BP neural network assessment model.This new assessment model based on SVM can raise the accuracy of classification between good credit and bad credit SMEs.(3)Therefore,the SCF credit risk assessment index system and the assessment model based on SVM,is the optimal combination for commercial banks to use to evaluate SMEs’credit risk.展开更多
基金sponsored by NSFC project(71372173、70972053)National Soft Science Research Project(2014GXS4D153)+6 种基金Specialized Research Fund of Ministry of Education for the Doctoral Project(20126118110017)Shaanxi Soft Science Research Project(2012KRZ13、2014KRM28-2、2013KRM08、2011KRM16)Shaanxi Social Science Funds projects(12D231,13D217)Xi’an Soft Science Research Program(SF1225-2)Shaanxi Department of Education Research Project(11JK0175)Shaanxi Department of Education Research Project(15JK1547)XAUT Teachers Scientific Research Foundation(107-211414).
文摘Background:Supply chain finance(SCF)is a series of financial solutions provided by financial institutions to suppliers and customers facing demands on their working capital.As a systematic arrangement,SCF utilizes the authenticity of the trade between(SMEs)and their“counterparties”,which are usually the leading enterprises in their supply chains.Because in these arrangements the leading enterprises are the guarantors for the SMEs,the credit levels of such counterparties are becoming important factors of concern to financial institutions’risk management(i.e.,commercial banks offering SCF services).Thus,these institutions need to assess the credit risks of the SMEs from a view of the supply chain,rather than only assessing an SME’s repayment ability.The aim of this paper is to research credit risk assessment models for SCF.Methods:We establish an index system for credit risk assessment,adopting a view of the supply chain that considers the leading enterprise’s credit status and the relationships developed in the supply chain.Furthermore,We conducted two credit risk assessment models based on support vector machine(SVM)technique and BP neural network respectly.Results:(1)The SCF credit risk assessment index system designed in this paper,which contained supply chain leading enterprise’s credit status and cooperative relationships between SMEs and leading enterprises,can help banks to raise their accuracy on predicting a small and medium enterprise whether default or not.Therefore,more SMEs can obtain loans from banks through SCF.(2)The SCF credit risk assessment model based on SVM is of good generalization ability and robustness,which is more effective than BP neural network assessment model.Hence,Banks can raise the accuracy of credit risk assessment on SMEs by applying the SVM model,which can alleviate credit rationing on SMEs.Conclusions:(1)The SCF credit risk assessment index system can solve the problem of banks incorrectly labeling a creditworthy enterprise as a default enterprise,and thereby improve the credit rating status in the process of SME financing.(2)By analyzing and comparing the empirical results,we find that the SVM assessment model,on evaluating the SME credit risk,is more effective than the BP neural network assessment model.This new assessment model based on SVM can raise the accuracy of classification between good credit and bad credit SMEs.(3)Therefore,the SCF credit risk assessment index system and the assessment model based on SVM,is the optimal combination for commercial banks to use to evaluate SMEs’credit risk.