For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,...For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.展开更多
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ...The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Based on wavelet packet transformation(WPT), genetic algorithm(GA), back propagation neural network(BPNN)and support vector machine(SVM), a fault diagnosis method of diesel engine valve clearance is presented. With po...Based on wavelet packet transformation(WPT), genetic algorithm(GA), back propagation neural network(BPNN)and support vector machine(SVM), a fault diagnosis method of diesel engine valve clearance is presented. With power spectral density analysis, the characteristic frequency related to the engine running conditions can be extracted from vibration signals. The biggest singular values(BSV)of wavelet coefficients and root mean square(RMS)values of vibration in characteristic frequency sub-bands are extracted at the end of third level decomposition of vibration signals, and they are used as input vectors of BPNN or SVM. To avoid being trapped in local minima, GA is adopted. The normal and fault vibration signals measured in different valve clearance conditions are analyzed. BPNN, GA back propagation neural network(GA-BPNN), SVM and GA-SVM are applied to the training and testing for the extraction of different features, and the classification accuracies and training time are compared to determine the optimum fault classifier and feature selection. Experimental results demonstrate that the proposed features and classification algorithms give classification accuracy of 100%.展开更多
Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Exper...Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.展开更多
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred...Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value.展开更多
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req...A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.展开更多
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o...A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.展开更多
The operation condition of the cold-end system of a steam turbine has a direct impact on the economy and security of the unit as it is an indispensible auxiliary system of the thermal power unit. Many factors influenc...The operation condition of the cold-end system of a steam turbine has a direct impact on the economy and security of the unit as it is an indispensible auxiliary system of the thermal power unit. Many factors influence the cold- end operation of a steam turbine; therefore, the operation mode needs to be optimized. The optimization analysis of a 1000 MW ultra-supercritical (USC) unit, the turbine cold- end system, was performed utilizing the back propagation (BP) neural network method with genetic algorithm (GA) optimization analysis. The optimized condenser pressure under different conditions was obtained, and it turned out that the optimized parameters were of significance to the performance and economic operation of the system.展开更多
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th...Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.展开更多
The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimen...The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.展开更多
A brief review of color matching technology and its application of printing RGB images by CMY or CMYK ink jet printers is presented, followed by an explanation to the conventional approaches that are commonly used in ...A brief review of color matching technology and its application of printing RGB images by CMY or CMYK ink jet printers is presented, followed by an explanation to the conventional approaches that are commonly used in color matching. Then, a four color matching method combining neural network with genetic algorithm is proposed. The initial weights and thresholds of the BP neural network for RGB to CMY color conversion are optimized by the new genetic algorithm based on evolutionarily stable strategy. The fourth component K is generated by using GCR (Gray Component Replacement) concept. Simulation experiments show that it is well behaved in both accuracy and generalization performance.展开更多
A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and...A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and the rise angle(α)are selected as the design parameters,and the mixing efficiency,thrust and total pressure loss are the optimization objectives.The CFX commercial solver coupled with the SST turbulence model is employed to simulate the flow field of lobed mixer.A tetrahedral unstructured grid with 5.6 million cells can achieve the similar global results.Based on the response surface approximation model of the lobed mixer,it is necessary to avoid increasing or decreasingαandηat the same time.Instead,theαshould be reduced while theηis appropriately increased,which is conducive to achieving the goal of increasing thrust and reducing losses at the expense of a small decrease in the mixing efficiency.Compared with the normalized method,the non-normalized method with better global optimization accuracy is more suitable for solving the multi-objective optimization problem of the lobed mixer,and its optimal solution(α=8.54°,η=1.165)is the optimal solution of the lobed mixer optimization problem studied in this paper.Compared with the reference lobed mixer,theα,β(the fall angle)and H(lobe height)of the optimal solution are reduced by 0.14°,1.34°and 3.97 mm,respectively,and theηis increased by 0.074;its mixing efficiency is decreased by 4.46%,but the thrust is increased by 2.29%and the total pressure loss is decreased by 0.64%.Downstream of the optimized lobed mixer,the radial scale and peak vorticity of the streamwise voritices decrease with the decreasing lobe height,thereby reducing the mixing efficiency.For the optimized lobed mixer,its low mixing efficiency is the main factor for the decrease of the total pressure loss,but the improvement of the geometric curvature is also conducive to reducing its profile loss.Within the scope of this study,the lobed mixer has an optimal mixing efficiency(ε=74.14%)that maximizes its thrust without excessively increasing the mixing loss.展开更多
Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of ...Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of experimental viscosity data collected from the literatures were used to develop the viscosity prediction model.Back-propagation(BP)neural network method was adopted,with the melt temperature and mass contents of Al,Si,Fe,Cu,Mn,Mg and Zn solutes as the model input,and the viscosity value as the model output.To improve the model accuracy,the influence of different training algorithms and the number of hidden neurons was studied.The initial weight and bias values were also optimized using genetic algorithm,which considerably improve the model accuracy.The average relative error between the predicted and experimental data is less than 5%,confirming that the optimal model has high prediction accuracy and reliability.The predictions by our model for temperature-and solute content-dependent viscosity of pure Al and binary Al alloys are in very good agreement with the experimental results in the literature,indicating that the developed model has a good prediction accuracy.展开更多
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ...This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.展开更多
This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and divi...This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.展开更多
Drilling costs of ultra-deepwell is the significant part of development investment,and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost.In o...Drilling costs of ultra-deepwell is the significant part of development investment,and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost.In order to improve the prediction accuracy of ultra-deep well drilling costs,the item and the dominant factors of drilling costs in Tarim oilfield are analyzed.Then,those factors of drilling costs are separated into categorical variables and numerous variables.Finally,a BP neural networkmodel with drilling costs as the output is established,and hyper-parameters(initial weights and bias)of the BP neural network is optimized by genetic algorithm(GA).Through training and validation of themodel,a reliable prediction model of ultra-deep well drilling costs is achieved.The average relative error between prediction and actual values is 3.26%.Compared with other models,the root mean square error is reduced by 25.38%.The prediction results of the proposed model are reliable,and the model is efficient,which can provide supporting for the drilling costs control and budget planning of ultra-deep wells.展开更多
In recent years,the incidence of breast cancer is increasing and becomes one of the main causes of female death.The BP neural network optimized by standard genetic algorithm has slow convergence speed and is prone to ...In recent years,the incidence of breast cancer is increasing and becomes one of the main causes of female death.The BP neural network optimized by standard genetic algorithm has slow convergence speed and is prone to local optimization,which makes the diagnosis accuracy of breast cancer decrease.This paper uses the improved genetic algorithm to optimize BP neural network by improving the selection operator of the standard genetic algorithm.The population diversity was first increased,and the probability of crossover and mutation was adaptively adjusted.Then deep optimization was executed on the initial weight threshold of BP network to speed up the network’s convergence,and the number of iterations was reduced.Finally breast cancer diagnose was performed.The experiment results show that both the fitness of the improved genetic algorithm and the recognition accuracy of breast cancer are improved.The shortcomings of the standard genetic algorithm optimized BP neural network algorithm in breast cancer diagnosis are well solved.展开更多
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the...Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA.展开更多
基金supported by Guangdong Provincial Technology Planning of China (Grant No. 2007B010400052)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of China (Grant No. 30715006)Guangdong Provincial Key Laboratory of Automotive Engineering, China (Grant No. 2007A03012)
文摘For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
基金Supported by the National Science and Technology Support Program of China(No.2015BAF07B04)
文摘Based on wavelet packet transformation(WPT), genetic algorithm(GA), back propagation neural network(BPNN)and support vector machine(SVM), a fault diagnosis method of diesel engine valve clearance is presented. With power spectral density analysis, the characteristic frequency related to the engine running conditions can be extracted from vibration signals. The biggest singular values(BSV)of wavelet coefficients and root mean square(RMS)values of vibration in characteristic frequency sub-bands are extracted at the end of third level decomposition of vibration signals, and they are used as input vectors of BPNN or SVM. To avoid being trapped in local minima, GA is adopted. The normal and fault vibration signals measured in different valve clearance conditions are analyzed. BPNN, GA back propagation neural network(GA-BPNN), SVM and GA-SVM are applied to the training and testing for the extraction of different features, and the classification accuracies and training time are compared to determine the optimum fault classifier and feature selection. Experimental results demonstrate that the proposed features and classification algorithms give classification accuracy of 100%.
基金Supported by the National Natural Science Foundation of China (21076090)
文摘Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.
文摘Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value.
文摘A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.
文摘The operation condition of the cold-end system of a steam turbine has a direct impact on the economy and security of the unit as it is an indispensible auxiliary system of the thermal power unit. Many factors influence the cold- end operation of a steam turbine; therefore, the operation mode needs to be optimized. The optimization analysis of a 1000 MW ultra-supercritical (USC) unit, the turbine cold- end system, was performed utilizing the back propagation (BP) neural network method with genetic algorithm (GA) optimization analysis. The optimized condenser pressure under different conditions was obtained, and it turned out that the optimized parameters were of significance to the performance and economic operation of the system.
文摘Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.
文摘The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.
文摘A brief review of color matching technology and its application of printing RGB images by CMY or CMYK ink jet printers is presented, followed by an explanation to the conventional approaches that are commonly used in color matching. Then, a four color matching method combining neural network with genetic algorithm is proposed. The initial weights and thresholds of the BP neural network for RGB to CMY color conversion are optimized by the new genetic algorithm based on evolutionarily stable strategy. The fourth component K is generated by using GCR (Gray Component Replacement) concept. Simulation experiments show that it is well behaved in both accuracy and generalization performance.
基金funded by the National Science and Technology Major Project(Grant No.J2019-II-0007-0027)。
文摘A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and the rise angle(α)are selected as the design parameters,and the mixing efficiency,thrust and total pressure loss are the optimization objectives.The CFX commercial solver coupled with the SST turbulence model is employed to simulate the flow field of lobed mixer.A tetrahedral unstructured grid with 5.6 million cells can achieve the similar global results.Based on the response surface approximation model of the lobed mixer,it is necessary to avoid increasing or decreasingαandηat the same time.Instead,theαshould be reduced while theηis appropriately increased,which is conducive to achieving the goal of increasing thrust and reducing losses at the expense of a small decrease in the mixing efficiency.Compared with the normalized method,the non-normalized method with better global optimization accuracy is more suitable for solving the multi-objective optimization problem of the lobed mixer,and its optimal solution(α=8.54°,η=1.165)is the optimal solution of the lobed mixer optimization problem studied in this paper.Compared with the reference lobed mixer,theα,β(the fall angle)and H(lobe height)of the optimal solution are reduced by 0.14°,1.34°and 3.97 mm,respectively,and theηis increased by 0.074;its mixing efficiency is decreased by 4.46%,but the thrust is increased by 2.29%and the total pressure loss is decreased by 0.64%.Downstream of the optimized lobed mixer,the radial scale and peak vorticity of the streamwise voritices decrease with the decreasing lobe height,thereby reducing the mixing efficiency.For the optimized lobed mixer,its low mixing efficiency is the main factor for the decrease of the total pressure loss,but the improvement of the geometric curvature is also conducive to reducing its profile loss.Within the scope of this study,the lobed mixer has an optimal mixing efficiency(ε=74.14%)that maximizes its thrust without excessively increasing the mixing loss.
基金the GM Research Foundation,China(No.GAC2094)Jiangsu Key Laboratory of Advanced Metallic Materials,China(No.BM2007204)the Fundamental Research Funds for the Central Universities,China(No.2242016K40011)。
文摘Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of experimental viscosity data collected from the literatures were used to develop the viscosity prediction model.Back-propagation(BP)neural network method was adopted,with the melt temperature and mass contents of Al,Si,Fe,Cu,Mn,Mg and Zn solutes as the model input,and the viscosity value as the model output.To improve the model accuracy,the influence of different training algorithms and the number of hidden neurons was studied.The initial weight and bias values were also optimized using genetic algorithm,which considerably improve the model accuracy.The average relative error between the predicted and experimental data is less than 5%,confirming that the optimal model has high prediction accuracy and reliability.The predictions by our model for temperature-and solute content-dependent viscosity of pure Al and binary Al alloys are in very good agreement with the experimental results in the literature,indicating that the developed model has a good prediction accuracy.
基金Supported by the National Natural Science Foundation of China(21076179)the National Basic Research Program of China(2012CB720500)
文摘This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.
文摘This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.
基金supported by the Science and Technology Innovation Foundation of CNPC“Multiscale Flow Law and Flow Field Coupling Study of Tight Sandstone Gas Reservoir”(2016D-5007-0208)13th Five-Year National Major Project“Multistage Fracturing Effect and Production of Fuling Shale Gas HorizontalWell Law Analysis Research”(2016ZX05060-009).
文摘Drilling costs of ultra-deepwell is the significant part of development investment,and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost.In order to improve the prediction accuracy of ultra-deep well drilling costs,the item and the dominant factors of drilling costs in Tarim oilfield are analyzed.Then,those factors of drilling costs are separated into categorical variables and numerous variables.Finally,a BP neural networkmodel with drilling costs as the output is established,and hyper-parameters(initial weights and bias)of the BP neural network is optimized by genetic algorithm(GA).Through training and validation of themodel,a reliable prediction model of ultra-deep well drilling costs is achieved.The average relative error between prediction and actual values is 3.26%.Compared with other models,the root mean square error is reduced by 25.38%.The prediction results of the proposed model are reliable,and the model is efficient,which can provide supporting for the drilling costs control and budget planning of ultra-deep wells.
文摘In recent years,the incidence of breast cancer is increasing and becomes one of the main causes of female death.The BP neural network optimized by standard genetic algorithm has slow convergence speed and is prone to local optimization,which makes the diagnosis accuracy of breast cancer decrease.This paper uses the improved genetic algorithm to optimize BP neural network by improving the selection operator of the standard genetic algorithm.The population diversity was first increased,and the probability of crossover and mutation was adaptively adjusted.Then deep optimization was executed on the initial weight threshold of BP network to speed up the network’s convergence,and the number of iterations was reduced.Finally breast cancer diagnose was performed.The experiment results show that both the fitness of the improved genetic algorithm and the recognition accuracy of breast cancer are improved.The shortcomings of the standard genetic algorithm optimized BP neural network algorithm in breast cancer diagnosis are well solved.
基金supported by Natural Science Foundation of Heilongjiang Province Youth Fund(No.QC2014C054)Foundation for University Young Key Scholar by Heilongjiang Province(No.1254G023)the Science Funds for the Young Innovative Talents of HUST(No.201304)
文摘Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA.