This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith...This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.展开更多
A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the rel...A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information.Then the sub-pixel scaled target could be predicted by the trained model.In order to improve the performance of BP network,BP learning algorithm with momentum was employed.The experiments were conducted both on synthetic images and on hyperspectral imagery(HSI).The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.展开更多
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. A...As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.展开更多
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st...The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm展开更多
Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional...Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure identification of the CRFNN in order to confirm the fuzzy rules and their correlative parameters effectively. Furthermore, we improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability.展开更多
Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development ...Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development of a novel memetic algorithm (MA) for neural network (NN) lcarnmg. Included in this is the integration of extremal optimization (EO) and Levenberg-Marquardt (LM) pradicnt search, and its application in BOF endpoint quality prediction. The fundamental analysis reveals that the proposed EO-LM algorithm may provide superior performance in generalization, computation efficiency, and avoid local minima, compared to traditional NN learning methods. Experimental results with production-scale BOF data show that the proposed method can effectively improve the NN model for BOF endpoint quality prediction.展开更多
基金Supported by the National 863 CIMS Project Foundation(863-511-010)Tianjin Natural Science Foundation(983602011)Backbone Young Teacher Project Foundation of Ministry of Education
文摘This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60272073, 60402025 and 60802059)by Foundation for the Doctoral Program of Higher Education of China (Grant No. 200802171003)
文摘A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information.Then the sub-pixel scaled target could be predicted by the trained model.In order to improve the performance of BP network,BP learning algorithm with momentum was employed.The experiments were conducted both on synthetic images and on hyperspectral imagery(HSI).The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.
文摘As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.
文摘The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm
基金Supported by the National High-Tech Research and Development Program of China (Grant No. 2006AA05A107)Special Fund of JiangsuProvince for Technology Transfer (Grant No. BA2007008)
文摘Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure identification of the CRFNN in order to confirm the fuzzy rules and their correlative parameters effectively. Furthermore, we improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability.
基金Project (No. 60721062) supported by the National Creative Research Groups Science Foundation of China
文摘Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development of a novel memetic algorithm (MA) for neural network (NN) lcarnmg. Included in this is the integration of extremal optimization (EO) and Levenberg-Marquardt (LM) pradicnt search, and its application in BOF endpoint quality prediction. The fundamental analysis reveals that the proposed EO-LM algorithm may provide superior performance in generalization, computation efficiency, and avoid local minima, compared to traditional NN learning methods. Experimental results with production-scale BOF data show that the proposed method can effectively improve the NN model for BOF endpoint quality prediction.