Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos...Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.展开更多
The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four exper...The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data.展开更多
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv...Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.展开更多
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ...Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.展开更多
The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed in...The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The HCl emission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased, if the sorbent(CaO) is added during the incineration process. Based on these experimental results, a 14×6×1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal co-fired fluidized bed incinerator.展开更多
According to the index early warning method, a commercial bank loans risk early warning system based on BP neural networks is proposed. The warning signal is mainly involved with the financial situation signal of loan...According to the index early warning method, a commercial bank loans risk early warning system based on BP neural networks is proposed. The warning signal is mainly involved with the financial situation signal of loaning corporation. Except the structure description of the system structure the demonstration of attemptive designing is also elaborated.展开更多
Climate change is the main factor affecting the country’s vulnerability,meanwhile,it is also a complicated and nonlinear dynamic system.In order to solve this complex problem,this paper first uses the analytic hierar...Climate change is the main factor affecting the country’s vulnerability,meanwhile,it is also a complicated and nonlinear dynamic system.In order to solve this complex problem,this paper first uses the analytic hierarchy process(AHP)and natural breakpoint method(NBM)to implement an AHP-NBM comprehensive evaluation model to assess the national vulnerability.By using ArcGIS,national vulnerability scores are classified and the country’s vulnerability is divided into three levels:fragile,vulnerable,and stable.Then,a BP neural network prediction model which is based on multivariate linear regression is used to predict the critical point of vulnerability.The function of the critical point of vulnerability and time is established through multiple linear regression analysis to obtain the regression equation.And the proportion of each factor in the equation is established by using the partial least-squares regression to select the main factors affecting the country’s vulnerability,and using the neural network algorithm to perform the fitting.Lastly,the BP neural network prediction model is optimized by genetic algorithm to get the chaotic time series BP neural network prediction model.In order to verify the practicability of the model,Cambodia is selected to be an example to analyze the critical point of the national vulnerability index.展开更多
This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and divi...This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.展开更多
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n...In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.展开更多
Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods...Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods to solve this kind of inverse problem has all kinds of shortcomings, BPNN (Back Propagation Neural Networks) method can be used to solve this typical inverse problem fast enough for real time measurement. In the traditional BPNN method, gradient descent search method is performed for error propagation. In this paper the authors propose a new algorithm that Newton method is performed for error propagation. For the cost function is highly nonconvex in the magnetic measurement problem, the new kind of BPNN can get convergent results quickly and precisely. A simulation result for this method is also presented.展开更多
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i...Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors.展开更多
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece...A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.展开更多
A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition...A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition by recommending. And neural networks were utilized to accomplish the color space conversion from CIE standard color space to CRT device color space. The neural networks related the color space conversion and color reproduction of soft/hard-copy directly to the influence of the illuminance and viewing condition in vision perceiver. The average color difference of training samples is 3.06 and that of testing samples is 5.17. The experiment results indicated that the neural networks can satisfy the requirements for the color appearance of hard-copy reproduction in CRT.展开更多
Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by com...Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by combining the numerical simulation with back-propagation(BP) networks. The BP networks are trained by the results of numerical simulation. The trained BP networks may:(1) shorten time for process planning;(2) optimize process parameters;(3) be employed in on-line quality control;(4) be integrated with knowledge-based system(KBS) and case-based reasoning(CBR) to make intelligent process planning of injection molding.展开更多
Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall co...Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.展开更多
There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is use...There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is used to deal with a set of variables as the input of a BP Neural Network. Therefore, not only is the number of variables less, but also most of the information of original variables is kept. Then, the BP Neural Network is established to analyze and predict stock prices. Finally, the analysis of Chinese stock market illustrates that the method predicting stock prices is satisfying and feasible.展开更多
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land...A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters.展开更多
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science&Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.41501361,41401385,30871965)the China Postdoctoral Science Foundation(No.2018M630728)+2 种基金the Open Fund of Fujian Provincial Key Laboratory of Resources and Environment Monitoring&Sustainable Management and Utilization(No.ZD1403)the Open Fund of Fujian Mine Ecological Restoration Engineering Technology Research Center(No.KS2018005)the Scientific Research Foundation of Fuzhou University(No.XRC1345)
文摘The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data.
基金Supported by National "Twelfth Five-Year" Plan for Science&Technology Support of China(Grant No.2011BAK06B05)National High-tech Research and Development Program of China(863 Program,Grant No.2013AA040203)Shanxi Scholarship Council of China(Grant No.2015-088)
文摘Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.
文摘Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.
文摘The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The HCl emission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased, if the sorbent(CaO) is added during the incineration process. Based on these experimental results, a 14×6×1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal co-fired fluidized bed incinerator.
基金Supported by the National Science Foundation of China(Approved NO.79770086)
文摘According to the index early warning method, a commercial bank loans risk early warning system based on BP neural networks is proposed. The warning signal is mainly involved with the financial situation signal of loaning corporation. Except the structure description of the system structure the demonstration of attemptive designing is also elaborated.
文摘Climate change is the main factor affecting the country’s vulnerability,meanwhile,it is also a complicated and nonlinear dynamic system.In order to solve this complex problem,this paper first uses the analytic hierarchy process(AHP)and natural breakpoint method(NBM)to implement an AHP-NBM comprehensive evaluation model to assess the national vulnerability.By using ArcGIS,national vulnerability scores are classified and the country’s vulnerability is divided into three levels:fragile,vulnerable,and stable.Then,a BP neural network prediction model which is based on multivariate linear regression is used to predict the critical point of vulnerability.The function of the critical point of vulnerability and time is established through multiple linear regression analysis to obtain the regression equation.And the proportion of each factor in the equation is established by using the partial least-squares regression to select the main factors affecting the country’s vulnerability,and using the neural network algorithm to perform the fitting.Lastly,the BP neural network prediction model is optimized by genetic algorithm to get the chaotic time series BP neural network prediction model.In order to verify the practicability of the model,Cambodia is selected to be an example to analyze the critical point of the national vulnerability index.
文摘This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.
文摘In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.
文摘Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods to solve this kind of inverse problem has all kinds of shortcomings, BPNN (Back Propagation Neural Networks) method can be used to solve this typical inverse problem fast enough for real time measurement. In the traditional BPNN method, gradient descent search method is performed for error propagation. In this paper the authors propose a new algorithm that Newton method is performed for error propagation. For the cost function is highly nonconvex in the magnetic measurement problem, the new kind of BPNN can get convergent results quickly and precisely. A simulation result for this method is also presented.
基金Xi'an Municipal Bureau of Science and Technology,Science and Technology Program,Medical Research Project。
文摘Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors.
基金The National Natural Science Foundations of China(50505029)
文摘A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.
文摘A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition by recommending. And neural networks were utilized to accomplish the color space conversion from CIE standard color space to CRT device color space. The neural networks related the color space conversion and color reproduction of soft/hard-copy directly to the influence of the illuminance and viewing condition in vision perceiver. The average color difference of training samples is 3.06 and that of testing samples is 5.17. The experiment results indicated that the neural networks can satisfy the requirements for the color appearance of hard-copy reproduction in CRT.
文摘Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by combining the numerical simulation with back-propagation(BP) networks. The BP networks are trained by the results of numerical simulation. The trained BP networks may:(1) shorten time for process planning;(2) optimize process parameters;(3) be employed in on-line quality control;(4) be integrated with knowledge-based system(KBS) and case-based reasoning(CBR) to make intelligent process planning of injection molding.
文摘Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.
文摘There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is used to deal with a set of variables as the input of a BP Neural Network. Therefore, not only is the number of variables less, but also most of the information of original variables is kept. Then, the BP Neural Network is established to analyze and predict stock prices. Finally, the analysis of Chinese stock market illustrates that the method predicting stock prices is satisfying and feasible.
基金the Key Program of National Natural Science Foundation (Project No.50339010) the Huaihe Valley 0pen Fund Project (No.Hx2007).
文摘A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters.