期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于Rough-GA-BP的文本分类算法
1
作者 李建锋 《计算机应用与软件》 CSCD 2010年第2期124-125,136,共3页
分析BP算法的缺点,并结合遗传算法和粗糙集理论构造出一种基于Rough-GA-BP的文本分类方法。该方法通过基于粗糙集理论的数据约简方法对文本输入向量进行数据约简,通过遗传算法对BP算法初始输入进行搜索和优化。实验表明,该方法相对于传... 分析BP算法的缺点,并结合遗传算法和粗糙集理论构造出一种基于Rough-GA-BP的文本分类方法。该方法通过基于粗糙集理论的数据约简方法对文本输入向量进行数据约简,通过遗传算法对BP算法初始输入进行搜索和优化。实验表明,该方法相对于传统的BP算法,节省了存储空间,缩短了算法学习时间,增加了网络的泛化能力,解决了传统BP算法容易陷入局部极小的问题,提高了分类准确率。 展开更多
关键词 bp算法 遗传算法 粗糙集 数据约简 Rouhg—gabp算法
下载PDF
一种基于遗传算法的BP神经网络算法及其应用 被引量:60
2
作者 王崇骏 于汶滌 +1 位作者 陈兆乾 谢俊元 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第5期459-466,共8页
主要分析了神经网络和遗传算法的特点和存在的一些缺陷,研究了遗传算法和BP神经网络学习算法相结合的相关技术,设计并实现了一个基于遗传算法的BP神经网络算法BP-GA,已应用于肺癌早期细胞病理诊断系统中.实验结果表明,该算法具有较强的... 主要分析了神经网络和遗传算法的特点和存在的一些缺陷,研究了遗传算法和BP神经网络学习算法相结合的相关技术,设计并实现了一个基于遗传算法的BP神经网络算法BP-GA,已应用于肺癌早期细胞病理诊断系统中.实验结果表明,该算法具有较强的收敛性和鲁棒性,其应用效果很好. 展开更多
关键词 遗传算法 bp神经网络学习算法 bp—ga算法 软计算 人工智能 收敛性 鲁棒性
下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
3
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure ga-bp hybrid algorithm IMPACT energy-absorption characteristic FORECAST
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部