期刊文献+
共找到7,912篇文章
< 1 2 250 >
每页显示 20 50 100
BP神经网络修剪算法筛选白血病预后危险因素 被引量:2
1
作者 邓伟 金丕焕 林果为 《复旦学报(医学版)》 EI CAS CSCD 北大核心 2003年第2期154-157,共4页
目的 通过单层BP网络的修剪算法 ,进行白血病预后危险因素筛选 ,并讨论修剪算法在医学统计中的应用及其与逐步logistic回归的联系。 方法 对上海市 1985 - 1995年间部分初发白血病病人的 6个月预后及可能的影响因素进行分析 ,分别用... 目的 通过单层BP网络的修剪算法 ,进行白血病预后危险因素筛选 ,并讨论修剪算法在医学统计中的应用及其与逐步logistic回归的联系。 方法 对上海市 1985 - 1995年间部分初发白血病病人的 6个月预后及可能的影响因素进行分析 ,分别用修剪算法和逐步logistic回归拟合不同的模型 ,利用ROC曲线下面积比较各个模型的判别和预测效果。结果 利用修剪算法 ,可得到与逐步logistic回归相同的BP模型结构 ;应用不同的修剪参数得到含不同连接的BP网络模型 ,最终稳定于含 10个连接的模型。所有修剪的BP网络对测试集的判别效果均好于逐步logistic回归。 结论 修剪算法可以进行变量筛选 ,并可应用于弱影响因素的探索。修剪的单层BP网络的权重系数与逐步logistic回归的回归系数相同 。 展开更多
关键词 白血病 预后 危险因素 bp神经网络修剪算法
下载PDF
熵在BP神经网络修剪算法中的应用 被引量:2
2
作者 郭伟 张昭昭 《信息与控制》 CSCD 北大核心 2009年第5期633-636,640,共5页
提出了一种基于熵理论的BP神经网络结构设计修剪算法.其实质是依据Shannon熵原理,定义神经网络隐层节点输出的拟熵,该熵与Shannon熵对不确定性的描述具有相同的效果,但克服了Shannon熵固有的缺点.将神经网络实际输出与期望输出的交叉熵... 提出了一种基于熵理论的BP神经网络结构设计修剪算法.其实质是依据Shannon熵原理,定义神经网络隐层节点输出的拟熵,该熵与Shannon熵对不确定性的描述具有相同的效果,但克服了Shannon熵固有的缺点.将神经网络实际输出与期望输出的交叉熵和隐节点输出拟熵作为代价函数,并采用熵周期的策略对网络参数进行寻优,最后通过删除合并隐层神经元达到简化神经网络结构的目的.通过逼近典型非线性函数进行仿真实验,结果表明,该修剪算法在保证其逼近性能的同时,可以简化BP神经网络结构. 展开更多
关键词 交叉熵 拟熵 bp神经网络 修剪算法
下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
3
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 bp神经网络 模糊化
下载PDF
基于BP神经网络算法的异步电机故障诊断系统研究 被引量:1
4
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB bp神经网络 遗传算法 网络优化
下载PDF
BP神经网络算法结合超高效液相色谱-质谱联用技术研究红花治疗慢性酒精性肝损伤的作用机制
5
作者 王曦烨 韩晓静 +2 位作者 姜明洋 白梅荣 许良 《质谱学报》 EI CAS CSCD 北大核心 2024年第6期897-906,I0006,共11页
临床上,红花对慢性酒精性肝损伤(chronic alcoholic liver injury,CALI)有很好的疗效,但治疗机制不甚明确。因此,阐明红花治疗CALI的分子作用机制对药物的进一步开发及应用具有重要意义。以雄性Wistar大鼠为研究对象,模型组大鼠以8 mL/k... 临床上,红花对慢性酒精性肝损伤(chronic alcoholic liver injury,CALI)有很好的疗效,但治疗机制不甚明确。因此,阐明红花治疗CALI的分子作用机制对药物的进一步开发及应用具有重要意义。以雄性Wistar大鼠为研究对象,模型组大鼠以8 mL/kg酒精连续灌胃28天,建立CALI模型;给药组大鼠分别以高(4.290 3 g/kg)、中(1.430 1 g/kg)、低(0.476 7 g/kg)剂量灌胃红花提取物。采用大鼠血清代谢组学分析方法结合超高效液相色谱-质谱技术鉴定与CALI相关的潜在生物标志物,并研究红花对这些生物标志物的调控机制。利用MATLAB软件建立BP神经网络模型处理组学数据的分类问题。从苏木精和伊红(H&E)染色实验发现,高剂量红花提取物减轻了肝细胞的损伤程度;与模型组相比,高剂量红花组中的丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)的表达水平降低,表明高剂量红花提取物具有肝保护作用。BP神经网络模型的分类准确率为95.8%,分类效果良好。通过火山图分析共鉴定出20种与CALI相关的生物标志物,红花可以对这些生物标志物产生回调效果。研究表明,红花可能通过对甘油三酯、脂肪酸、磷脂、胆汁酸、氨基酸、维生素E代谢的调控作用而对CALI产生治疗效果。本研究可为红花的推广和临床应用提供了理论基础。 展开更多
关键词 红花 慢性酒精性肝损伤 代谢组学 超高效液相色谱-质谱(UHPLC-MS) bp神经网络算法
下载PDF
紫外光谱结合BP神经网络算法建立食用油掺伪煎炸油的快速鉴定模型
6
作者 陈林林 吴松遥 +5 位作者 王玲 张铭 李昕彤 张海鹏 郝熙 李伟 《中国粮油学报》 CAS CSCD 北大核心 2024年第6期206-214,共9页
为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后... 为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后的光谱特征峰与BP(Backpropagation)神经网络算法结合建立食用油掺伪煎炸油模型,对掺入煎炸油类别、煎炸时间和煎炸油含量进行鉴别分析。结果表明二阶导数预处理后掺伪煎炸油的光谱特征峰中大豆油为446、462 nm、玉米油为268、274 nm、葵花籽油为280、288 nm,根据其特征峰位与峰值建立Levenberg–Marquardt算法(LMA)、动量梯度下降法(MGD)及弹性梯度下降法(EGD)掺伪模型识别率分别为98.15%、91.67%、95.52%。 展开更多
关键词 食用油 煎炸油 紫外光谱 掺伪 bp神经网络算法
下载PDF
基于BP神经网络和遗传算法的设备故障诊断与健康管理模型研究
7
作者 和征 张同静 杨小红 《制造技术与机床》 北大核心 2024年第11期9-15,共7页
针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了... 针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了设备故障诊断与健康管理模型。最后,以机电设备振动数据为例,进行设备故障诊断模型的预测结果分析,验证了该模型的可行性。研究结果表明,该模型能提高设备故障诊断正确率,具有较好的故障诊断效果;设备预测健康状态与实际健康状态的变化趋势基本保持一致,重合率大于90%。该成果可为制造企业的设备故障诊断与健康管理提供相关策略,有效排除故障问题,降低管理成本。 展开更多
关键词 设备故障诊断 设备健康管理 bp神经网络 遗传算法
下载PDF
遗传算法优化BP神经网络在水质评价中的应用 被引量:1
8
作者 宋洁 冯青 《甘肃科技》 2024年第1期33-41,共9页
通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值... 通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值以及网络收敛慢等问题,同时结合2021年黄河上游部分断面地表水环境质量评价进行了实例仿真实验,验证了该模型的可行性和准确性。遗传算法优化后的BP神经网络不仅能从全局考虑污染因子对评价结果的影响,而且解决了常规BP神经网络易陷入局部极值的问题,提高了网络的识别精度,评价结果更准确,更符合实际水体情况,在一定程度上改善了传统评价方法的片面性和主观性,对现有的水环境质量评价方法的改进起到了积极作用。 展开更多
关键词 bp神经网络 遗传算法 黄金分割算法 水环境质量评价 MATLAB
下载PDF
基于遗传算法优化BP神经网络的生石膏超细磨预测效果研究
9
作者 张帅 王宇斌 +2 位作者 桂婉婷 田晓珍 华开强 《化工矿物与加工》 CAS 2024年第6期9-15,共7页
为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏... 为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏粉体制备过程中影响细度因素的显著性由大到小依次为排矿口宽度、矿浆质量分数和超细磨时间。利用排矿口宽度和矿浆质量分数两个主要影响因素,利用遗传算法对BP神经网络进行优化,与未优化的BP神经网络相比,经遗传算法优化的BP神经网络具有更高的精度,预测误差也更小,其d_(50)平均绝对误差为0.7575,均方误差为0.7977,均方误差根为0.8931,平均绝对百分比误差为4.4838%;d_(90)平均绝对误差为0.7870,均方误差为0.8294,均方误差根为0.9107,平均绝对百分比误差为1.6658%。研究成果可为超细粉体的制备提供参考。 展开更多
关键词 遗传算法 bp神经网络 生石膏 超细磨 显著性 相关系数 预测精度
下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别
10
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的bp神经网络
下载PDF
基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测
11
作者 赵萍 阮旭东 +4 位作者 刘亚风 赵思逸 孙雨 常杰 周俊 《土壤》 CAS CSCD 北大核心 2024年第4期889-896,共8页
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As... 本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤p H和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R^(2)、r、RMSE、MAE分别是IDW和BPNN的3.03倍、2.56倍,2.93倍、2.39倍,0.85倍、0.61倍,0.79倍、0.62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。 展开更多
关键词 遗传算法 bp神经网络 GAbp模型 空间分布预测 重金属含量
下载PDF
BP神经网络算法在求解数学建模最优化问题中的应用
12
作者 吴小兰 张益敏 张奕河 《计算机应用文摘》 2024年第6期72-74,79,共4页
为了解决目标函数较为复杂、无法用初等函数表示的最优化问题,文章采用了结合BP神经网络与遗传算法的方法进行求解。求解过程分为两个模块:第一,利用BP神经网络算法确定目标函数的解析式;第二,利用遗传算法寻找目标函数的最优解。为验... 为了解决目标函数较为复杂、无法用初等函数表示的最优化问题,文章采用了结合BP神经网络与遗传算法的方法进行求解。求解过程分为两个模块:第一,利用BP神经网络算法确定目标函数的解析式;第二,利用遗传算法寻找目标函数的最优解。为验证该方法的可行性,文章对单变量和多变量两种情况进行了验证。 展开更多
关键词 bp神经网络 遗传算法 最优化
下载PDF
基于遗传算法改进BP神经网络的电火花加工参数优化方法
13
作者 王琛 《机械设计与制造工程》 2024年第11期51-56,共6页
针对电火花加工现行智能控制方式下,由于刀尖的震动幅值高,导致加工速度低和加工后零件表面粗糙度高的问题,提出基于遗传算法改进BP神经网络的电火花加工参数优化方法。通过分析电火花加工原理,构建基于BP神经网络电火花加工参数优化模... 针对电火花加工现行智能控制方式下,由于刀尖的震动幅值高,导致加工速度低和加工后零件表面粗糙度高的问题,提出基于遗传算法改进BP神经网络的电火花加工参数优化方法。通过分析电火花加工原理,构建基于BP神经网络电火花加工参数优化模型,以6个加工参数作为模型输入,以加工速度和零件表面粗糙度为模型输出,并将模型期望输出值和实际值之间的误差视作遗传算法的适应度函数,以适应度函数最小化为标准,获取最优权值与阈值作用于BP神经网络,实现电火花加工参数优化。实验结果表明,该方法最低加工速度仅为16.6 mm^(2)/min,表面粗糙度最高仅为6.7μm,有效提升了加工效率。 展开更多
关键词 bp神经网络 遗传算法 电火花 机械加工 参数优化 粗糙度
下载PDF
基于BP神经网络算法的树状结构智能找形分析
14
作者 张倩 《信息系统工程》 2024年第11期48-51,共4页
基于BP神经网络算法,探讨了树状结构智能找形分析的方法与应用。通过建立BP神经网络模型,利用其优秀的非线性映射和学习能力,实现了对树状结构图像的形状识别和分析。对树状结构进行了图像预处理和特征提取,然后将提取的特征作为BP神经... 基于BP神经网络算法,探讨了树状结构智能找形分析的方法与应用。通过建立BP神经网络模型,利用其优秀的非线性映射和学习能力,实现了对树状结构图像的形状识别和分析。对树状结构进行了图像预处理和特征提取,然后将提取的特征作为BP神经网络的输入训练网络模型以识别不同形状的树状结构。实验结果表明,所提方法在形状识别的准确性和鲁棒性上均取得了良好表现,具有较高的应用潜力和推广价值。为树状结构图像处理领域提供了一种有效的分析方法,有助于进一步提升图像识别技术在实际应用中的应用效果和智能化水平。 展开更多
关键词 bp神经网络算法 树状结构 智能找形
下载PDF
基于遗传算法的BP神经网络在轻质路基沉降预测中的应用 被引量:6
15
作者 沈璐 陈修和 +1 位作者 陶文斌 李健斌 《广西科技大学学报》 CAS 2024年第2期32-39,共8页
为更好地掌握轻质路基施工过程中的沉降变形情况,选取宁芜保通线部分轻质路基沉降监测数据,在BP(back propagation)神经网络模型的基础上,采用遗传算法对其进行优化,并将优化后的模型应用于轻质路基沉降预测。结果表明:遗传算法优化的B... 为更好地掌握轻质路基施工过程中的沉降变形情况,选取宁芜保通线部分轻质路基沉降监测数据,在BP(back propagation)神经网络模型的基础上,采用遗传算法对其进行优化,并将优化后的模型应用于轻质路基沉降预测。结果表明:遗传算法优化的BP神经网络在全局搜索能力和收敛能力方面具有明显优势;在轻质路基沉降预测任务中,多数预测结果的相对误差集中在更低的范围内,监测点1和监测点2预测结果的模型评价指标MAE、RMSE、MAPE分别为0.017 mm、0.021 mm、0.679%和0.013 mm、0.016 mm、1.395%,预测结果拟合程度高,误差小,模型泛化能力强。因此,遗传算法优化的BP神经网络的沉降预测模型具有可靠的预测效果与预测精度,在实际工程中可行性较高,可作为轻质路基沉降预测和预警的一种辅助手段。 展开更多
关键词 轻质路基 地基沉降 预测 遗传算法 bp神经网络
下载PDF
基于麻雀搜索算法优化BP人工神经网络的短期湍流预报模型研究 被引量:1
16
作者 张恒 张雷 +2 位作者 姚海峰 佟首峰 曹玉玺 《长春理工大学学报(自然科学版)》 2024年第2期58-65,共8页
提出了一种基于麻雀搜索算法优化BP人工神经网络(SSA-BP)的湍流预报模式。首先,采用BP人工神经网络作为湍流预报模型的基础框架。通过对温度、湿度、风速等气象因素的采集和处理,将其作为输入层的特征。然后,利用麻雀搜索算法对BP人工... 提出了一种基于麻雀搜索算法优化BP人工神经网络(SSA-BP)的湍流预报模式。首先,采用BP人工神经网络作为湍流预报模型的基础框架。通过对温度、湿度、风速等气象因素的采集和处理,将其作为输入层的特征。然后,利用麻雀搜索算法对BP人工神经网络的权重和偏置进行优化。为了验证该方法的有效性,采用了来自地面气象站的大气湍流数据及气象数据进行实验。实验结果表明,SSA-BP人工神经网络能够成功预测大气湍流的发展趋势,并具有较高的预测精度和稳定性,能够充分利用大气湍流数据中的非线性特征,为湍流预测研究和实际应用提供了有力支持。 展开更多
关键词 bp人工神经网络 麻雀搜索算法 气象参数 大气湍流预测
下载PDF
基于粒子群算法优化BP神经网络的轴承故障诊断 被引量:1
17
作者 樊怀聪 田禾 +1 位作者 冯明文 曹冉冉 《机械制造与自动化》 2024年第3期45-49,共5页
通过PSO优化BP神经网络的权值和阈值,采用此算法对滚动轴承进行故障诊断,以驱动端加速度数据和风扇端加速度数据作为输入,通过训练网络输出轴承3种不同状态,实现对轴承的故障诊断。仿真结果表明:此网络模型能够准确识别出轴承运行状态... 通过PSO优化BP神经网络的权值和阈值,采用此算法对滚动轴承进行故障诊断,以驱动端加速度数据和风扇端加速度数据作为输入,通过训练网络输出轴承3种不同状态,实现对轴承的故障诊断。仿真结果表明:此网络模型能够准确识别出轴承运行状态和故障类型,正常样本测试准确率达到98%,并且相对于BP神经网络来说测试精度和准确性都有较大提升,泛化能力更强,可行性高。 展开更多
关键词 轴承 故障诊断 bp神经网络 粒子群算法
下载PDF
BP神经网络PID算法在循环流化床锅炉中的研究 被引量:1
18
作者 陈智晗 孟亚男 +1 位作者 刘宇菲 张赛 《电子制作》 2024年第3期118-120,117,共4页
本文以循环流化床锅炉的床温控制为研究对象,针对传统PID控制算法自适应能力不强的缺点,提出了基于BP神经网络和PID控制器相结合的BP-PID控制器,指出BP-PID控制器算法的自适应控制效果和鲁棒性,并根据其系统结构、算法流程和参数设置,... 本文以循环流化床锅炉的床温控制为研究对象,针对传统PID控制算法自适应能力不强的缺点,提出了基于BP神经网络和PID控制器相结合的BP-PID控制器,指出BP-PID控制器算法的自适应控制效果和鲁棒性,并根据其系统结构、算法流程和参数设置,进行实验仿真,验证该控制器的优化效果。实验结果表明,BaP-PID控制器可以更好地控制循环流化床锅炉床温,实现了对系统性能指标的最优化控制,得到了较为理想的控制效果。 展开更多
关键词 床温 PID控制算法 bp神经网络
下载PDF
基于BP人工神经网络与遗传算法的航速优化
19
作者 陈映彬 文逸彦 +2 位作者 董国祥 屠海洋 张焱飞 《舰船科学技术》 北大核心 2024年第1期82-87,共6页
为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本... 为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本满足工程应用要求。最后,利用遗传算法,并基于历史气象数据对目标船舶的航线做分段航速优化。计算结果表明,航速优化后目标船舶的航行时长不仅能减少1.35天,燃油损耗还可节省10.1%,由此说明对航行船舶做分段航速优化是一种可行方案。 展开更多
关键词 bp神经网络 遗传算法 油耗模型 航速优化
下载PDF
计及改进粒子群算法优化BP神经网络的沼气产量软测量预测模型
20
作者 于雪彬 贾宇琛 +2 位作者 高立艾 周加栋 霍利民 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期643-650,共8页
为准确预测大中型沼气工程的日产气量,提出一种利用基于PSO-BP模型的软测量方法。首先,依托软测量技术选取参数;其次,以进料量、发酵温度、液位、罐内液压等参数作为输入量,沼气日产量为输出量进行模型建立。在此基础上,使用线性降低权... 为准确预测大中型沼气工程的日产气量,提出一种利用基于PSO-BP模型的软测量方法。首先,依托软测量技术选取参数;其次,以进料量、发酵温度、液位、罐内液压等参数作为输入量,沼气日产量为输出量进行模型建立。在此基础上,使用线性降低权重系数法和引入变异算子对粒子群算法进行改进,并对BP神经网络进行初始化来提高模型性能。通过实验比较改进PSO-BP模型、传统BP神经网络以及遗传算法优化的BP神经网络在预测沼气日产量方面的性能,采用改进的PSO-BP模型进行预测时,均方根误差(RMSE)、决定系数(R2)和平均绝对误差(MAE)分别为1.38440、0.84011和1.00910,证明改进PSO-BP模型结合软测量技术对进行复杂非线性牛粪高温厌氧发酵过程预测的可行性,同时可保证预测结果的精准性。 展开更多
关键词 生物质能 沼气 粒子群优化算法 bp神经网络 软测量技术
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部