期刊文献+
共找到6,511篇文章
< 1 2 250 >
每页显示 20 50 100
基于FA-BP神经网络模型的烘丝机设备故障诊断 被引量:2
1
作者 汪冬冬 侯加文 +2 位作者 焦帅帅 江豪 张保威 《中国仪器仪表》 2024年第1期40-44,共5页
烘丝机作为烟丝生产的重要设备,其健康状态直接影响着烟丝的品质及生产效率。为了较早诊断出烘丝机故障,降低因故障带来的损失,提出了一种基于萤火虫算法(FA)优化BP神经网络的烘丝机故障诊断算法。首先,分析烘丝机的故障特征;其次,利用... 烘丝机作为烟丝生产的重要设备,其健康状态直接影响着烟丝的品质及生产效率。为了较早诊断出烘丝机故障,降低因故障带来的损失,提出了一种基于萤火虫算法(FA)优化BP神经网络的烘丝机故障诊断算法。首先,分析烘丝机的故障特征;其次,利用萤火虫算法寻优特性找到BP神经网络的最优权值和阈值,使故障诊断模型效果达到最佳状态。通过与SVM和BP神经网络模型进行对比分析,结果表明,使用FA-BP神经网络模型的烘丝机故障诊断准确率高达94.5%,诊断效果优于所对比的模型。 展开更多
关键词 烘丝机 萤火虫算法 bp神经网络 故障诊断
下载PDF
基于BP神经网络算法的异步电机故障诊断系统研究 被引量:1
2
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB bp神经网络 遗传算法 网络优化
下载PDF
基于BP神经网络的高校教师精准教学能力评价模型构建
3
作者 魏培文 朱珂 +3 位作者 叶海智 张潍杰 张利远 闫娟 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-116,共9页
通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能... 通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能力评价模型研究.首先,以理论研究为基础,对精准教学能力进行等级划分并构建评价指标框架,运用层级分析法建立指标权重;其次,利用BP神经网络智能学习的特性,以不同数据类型的指标值为输入,对应能力综合值为输出,检验精准教学能力分级及指标权重的合理性,进而生成较为客观的评价模型;最后,利用开发的评价系统和调查问卷进行样本数据采集和模型检验,从神经网络对数据的分类、拟合及仿真结果来看,模型能够对高校教师的精准教学能力进行客观评价,教师对模型测量结果的准确性也具有较高认可度. 展开更多
关键词 教育数字化转型 高校教师 精准教学能力 评价模型 bp神经网络
下载PDF
基于HSS-MCC融合模型及SSA-BP神经网络开展深基坑超大变形预测研究
4
作者 倪小东 张宇科 +3 位作者 焉磊 王东兴 徐硕 王媛 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期35-45,共11页
软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神... 软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神经网络在基坑变形预测中得到广泛应用,但在训练过程中,权阈值易陷入局部最优解,影响预测的准确性.据此,依托南京地区典型软土深基坑工程,采用Midas中的HSS模型与MCC模型进行分析,比对两种模型的桩体变形量差异,并基于最小二乘准则对两模型进行线性融合,融合模型可对后续区段监测数据进行校准及补充.通过融合麻雀搜索算法对BP神经网络进行优化,在其训练过程中快速收敛,得到全局最优的权阈值,依托狭长基坑已开挖区段监测数据学习训练,进而依据后续区段浅部开挖揭露深部变形特征,预测结果与实测值吻合度较高.研究结果对软土地区深基坑大变形的预测研究具有重要参考价值. 展开更多
关键词 深基坑 大变形 HSS模型 MCC模型 bp神经网络 麻雀搜索算法
下载PDF
面向2035的基础教育教师需求规模预测——基于BP神经网络模型
5
作者 高晓清 吴敏 《湖南师范大学教育科学学报》 CSSCI 北大核心 2024年第5期64-75,共12页
基于2003—2021年基础教育教师规模及其影响因素的变动情况,采用BP神经网络模型对2023—2035年基础教育教师需求和师资盈缺情况进行预测,发现基础教育教师总体需求规模呈现不断缩小的趋势,其中学前教育和小学阶段教师需求持续下降,初中... 基于2003—2021年基础教育教师规模及其影响因素的变动情况,采用BP神经网络模型对2023—2035年基础教育教师需求和师资盈缺情况进行预测,发现基础教育教师总体需求规模呈现不断缩小的趋势,其中学前教育和小学阶段教师需求持续下降,初中和普通高中阶段教师需求呈先增后减趋势。这一期间,师资需求振幅较大,学前教育和小学阶段师资需求将出现阶段性短缺或过剩,这对教师资源的供给弹性和适应性提出了更高要求。基于以上发现,管理部门应稳定部署师范生招生计划,推进教师供需均衡;加强教育体系内贯通协作,促进教师合理流动;催生社会需求新业态,激励教师多元就业。 展开更多
关键词 基础教育 教师需求 师资盈缺 bp神经网络模型 2035
下载PDF
基于最小二乘法和BP神经网络的磁流变阻尼器H-B模型参数辨识方法
6
作者 张忠奎 张晗 闫洋洋 《机床与液压》 北大核心 2024年第4期126-131,共6页
针对Bingham模型磁流变阻尼器由于剪切稀化效应带来的阻尼力计算误差,在理论和仿真分析的基础上,提出一种最小二乘法和BP神经网络相结合的方法,对磁流变阻尼器H-B模型进行参数辨识,获得各参数与电流的关系,从而对磁流变阻尼器的阻尼力... 针对Bingham模型磁流变阻尼器由于剪切稀化效应带来的阻尼力计算误差,在理论和仿真分析的基础上,提出一种最小二乘法和BP神经网络相结合的方法,对磁流变阻尼器H-B模型进行参数辨识,获得各参数与电流的关系,从而对磁流变阻尼器的阻尼力进行准确计算。最后通过磁流变阻尼器实验对理论方法进行验证。结果表明:借助于磁流变阻尼器的仿真分析,最小二乘法和BP神经网络相结合的磁流变阻尼器H-B模型参数辨识方法精确度高、吻合性好,验证了参数辨识结果的通用性及准确性。 展开更多
关键词 磁流变液阻尼器 H-B模型 最小二乘法 bp神经网络
下载PDF
基于BP神经网络的儿童乘员头部损伤预测模型及评估参数研究 被引量:1
7
作者 王彦鑫 李海岩 +2 位作者 崔世海 贺丽娟 吕文乐 《汽车工程》 EI CSCD 北大核心 2024年第2期329-336,共8页
智能座舱与虚拟测评规程的推广,给乘员损伤评价带来新挑战,损伤机理与损伤风险评估参数更加多样化。本文基于图斯特6岁儿童乘员损伤仿生模型与BP神经网络算法构建正面100%重叠刚性壁障工况中乘员坐姿角度与头部损伤指标相关性预测模型,... 智能座舱与虚拟测评规程的推广,给乘员损伤评价带来新挑战,损伤机理与损伤风险评估参数更加多样化。本文基于图斯特6岁儿童乘员损伤仿生模型与BP神经网络算法构建正面100%重叠刚性壁障工况中乘员坐姿角度与头部损伤指标相关性预测模型,探究不同坐姿下头部损伤风险以及不同评价指标之间的相关性与差异性。结果表明,构建的相关性损伤预测模型具有良好的可信度(R2>0.90),可以用于损伤预测与分析。现有头部损伤评价指标在小角度坐姿范围内(95°~108°)对头损伤评估及预测具有良好的一致性,但是对于大角度坐姿乘员,不同损伤评价指标对头部损伤风险的评估存在显著差异。因此,目前实施的头部损伤评价参数具有局限性,未来虚拟测评中应综合运动学和生物力学参数对头部损伤风险进行更加全面的评估。该研究结果可以为儿童约束系统的改善、虚拟测评以及大角度坐姿乘员头部损伤评价参数的选取提供数据与理论支撑。 展开更多
关键词 损伤仿生模型 儿童乘员 bp神经网络 虚拟测评 坐姿角度
下载PDF
日光温室环境因子预测模型及应用——基于BP神经网络 被引量:1
8
作者 宋财柱 塔娜 +3 位作者 闫彩霞 孙云峰 甄琦 李晓凯 《农机化研究》 北大核心 2024年第10期175-179,186,共6页
为探讨北方日光温室内空气温湿度的变化规律,预测其变化趋势,进而确定合理的调控措施,采用L-M算法建立BP神经网络预测模型;选择S型函数作为网络激活函数,建立一种适用于北方日光温室空气温湿度环境因子的模拟预测模型。选取正常生产的... 为探讨北方日光温室内空气温湿度的变化规律,预测其变化趋势,进而确定合理的调控措施,采用L-M算法建立BP神经网络预测模型;选择S型函数作为网络激活函数,建立一种适用于北方日光温室空气温湿度环境因子的模拟预测模型。选取正常生产的日光温室为试验基地进行数据采集,采用皮尔逊相关系数确定模拟预测模型的输入因子,从1个月1440组实测数据中选取前29天的数据进行训练,对最后一天预测出的数据进行验证。研究结果表明:分段预测的预测值与实测值的符合度值大于全天预测,且分段预测的符合度大于0.99,均方根误差小于0.4,模型可用于模拟和预测北方日光温室大棚内空气温度与湿度的变化趋势,具有良好效果。 展开更多
关键词 日光温室 环境因子 bp神经网络 预测模型
下载PDF
基于GA优化BP神经网络的小电流接地故障选线方法 被引量:2
9
作者 徐思旸 范剑英 丁强 《电测与仪表》 北大核心 2024年第1期183-188,共6页
将GA优化BP神经网络的算法引入到小电流接地故障选线方法中。文中基于MATLAB进行仿真试验,通过小波包法、五次谐波法、基波比幅比相法及零序有功功率法等传统选线方法,将零序电流信号的各种特征量进行提取,经过故障测度函数计算得到故... 将GA优化BP神经网络的算法引入到小电流接地故障选线方法中。文中基于MATLAB进行仿真试验,通过小波包法、五次谐波法、基波比幅比相法及零序有功功率法等传统选线方法,将零序电流信号的各种特征量进行提取,经过故障测度函数计算得到故障测度数据,将数据分别输入到GA-BP神经网络与单一BP神经网络进行训练和测试,讨论GA-BP神经网络算法与单一BP神经网络算法选线性能的差异,输出故障选线结果并与基于各选线方法的故障测度数据进行对比。结果表明,综合多种传统选线方法的GA-BP神经网络准确率明显高于传统选线方法,且其选线速度与精度优于单一BP神经网络,能够更快速、有效地进行故障选线,满足配电网故障选线要求。 展开更多
关键词 遗传算法 故障选线 bp神经网络 故障测度
下载PDF
基于灰色GM-BP神经网络组合模型的中国镍原矿多情景需求预测 被引量:1
10
作者 周文潇 詹成 +2 位作者 张周益 阮晟哲 成金华 《资源与产业》 2024年第2期53-66,共14页
2016年我国颁布《全国矿产资源规划(2016—2020年)》,首次将镍列为战略性矿产资源。我国是全球最大的镍消费国,但镍资源储量少,对外依存度高,科学预测镍原矿需求量对保障镍矿产业链与供应链安全具有重要的现实意义。从需求侧出发,利用... 2016年我国颁布《全国矿产资源规划(2016—2020年)》,首次将镍列为战略性矿产资源。我国是全球最大的镍消费国,但镍资源储量少,对外依存度高,科学预测镍原矿需求量对保障镍矿产业链与供应链安全具有重要的现实意义。从需求侧出发,利用灰色关联度法选取中国不锈钢产量、人均GDP、电镀行业市场规模、城镇化率、产业结构、新能源汽车产量作为镍原矿需求情景预测的驱动变量,再在灰色GM(1,1)模型预测基础上,与BP神经网络算法相结合,构建基于残差优化的GM-BP组合模型,对2025—2035年中国镍原矿需求展开多情景预测。研究结果表明:组合模型实现了对小样本非线性时间序列数据的有效预测,且比GM(1,1)模型拟合误差更小,预测精度更高;根据组合模型,2025年、2030年、2035年我国镍原矿多情景需求均值分别为182.22万t、272.08万t、395.17万t,“十四五”“十五五”“十六五”期间需求年均增长4.26%、10.54%、9.78%。镍原矿需求呈稳定上升态势,镍矿供需矛盾将进一步加剧,我国必须提高镍供应能力,降低对进口镍的依赖程度。对此,提出如下政策建议:1)推进国内不锈钢产业的转型升级,优化生产工艺和产品结构,推广新型合金材料的应用;2)加大对镍矿勘探和开发的支持力度,如鼓励矿业企业技术创新,提高勘探效率和精度,同时积极推动国际合作,吸引国外先进技术、设备进入国内市场;3)促进进口多元化,与多个供应国建立合作关系,鼓励国内企业参与海外镍矿项目。 展开更多
关键词 GM-bp模型 bp神经网络 镍原矿需求 情景预测
下载PDF
基于粒子群算法优化BP神经网络的轴承故障诊断 被引量:1
11
作者 樊怀聪 田禾 +1 位作者 冯明文 曹冉冉 《机械制造与自动化》 2024年第3期45-49,共5页
通过PSO优化BP神经网络的权值和阈值,采用此算法对滚动轴承进行故障诊断,以驱动端加速度数据和风扇端加速度数据作为输入,通过训练网络输出轴承3种不同状态,实现对轴承的故障诊断。仿真结果表明:此网络模型能够准确识别出轴承运行状态... 通过PSO优化BP神经网络的权值和阈值,采用此算法对滚动轴承进行故障诊断,以驱动端加速度数据和风扇端加速度数据作为输入,通过训练网络输出轴承3种不同状态,实现对轴承的故障诊断。仿真结果表明:此网络模型能够准确识别出轴承运行状态和故障类型,正常样本测试准确率达到98%,并且相对于BP神经网络来说测试精度和准确性都有较大提升,泛化能力更强,可行性高。 展开更多
关键词 轴承 故障诊断 bp神经网络 粒子群算法
下载PDF
基于PSO-IBP神经网络的纯电动汽车电驱总成故障诊断
12
作者 肖伟 李泽军 +2 位作者 管天福 贺路 陈绪兵 《现代制造工程》 CSCD 北大核心 2024年第1期137-141,共5页
为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)... 为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。 展开更多
关键词 纯电动汽车 粒子群算法 bp神经网络 故障诊断
下载PDF
基于BP神经网络的乒乓球优秀女子单打比赛结果预测模型构建及仿真应用 被引量:1
13
作者 修霆喆 于红妍 黄雯妍 《哈尔滨体育学院学报》 2024年第2期89-96,共8页
为构建优秀女子运动员技战术表现与比赛获胜的理论模型,合理安排技战术训练及比赛策略提供参考借鉴。运用录像观察法、数理统计法及BP神经网络构建乒乓球优秀女子单打比赛结果预测模型。在此基础上,利用预测模型仿真分析新型塑料球时代... 为构建优秀女子运动员技战术表现与比赛获胜的理论模型,合理安排技战术训练及比赛策略提供参考借鉴。运用录像观察法、数理统计法及BP神经网络构建乒乓球优秀女子单打比赛结果预测模型。在此基础上,利用预测模型仿真分析新型塑料球时代优秀女子乒乓球运动员在不同水平技战术组合下的比赛获胜模式。本文构建的预测模型R为0.978,R~2为0.956,平均绝对误差为0.0085,模型精度达到98.4%;仿真分析1 024种技战术段组合结果可知,568种组合的预测结果为获胜,456种组合的预测结果为失败。结论:基于BP神经网络构建的乒乓球优秀女子单打比赛结果预测模型拟合效果佳,个案实证预测效果较好,具有较高的预测性能;新型塑料球时代优秀女子运动员在单打比赛中,各技战术段之间的补偿效应因技战术段和等级而有所不同,评估总分17分为女子单打比赛胜负的分界点,不同水平技战术段组合的比赛评估总分大于17分即可取得比赛胜利,低于17分则会落败。 展开更多
关键词 乒乓球 女子单打 bp神经网络 预测模型
下载PDF
基于物理参数和BP神经网络的9310钢本构模型研究
14
作者 王宇航 罗拴谋 +4 位作者 董显娟 徐勇 黄龙 涂泽立 李佳俊 《塑性工程学报》 CAS CSCD 北大核心 2024年第8期117-124,共8页
采用Gleeble-3800热模拟试验机对9310钢进行了变形量为70%的等温恒应变速率压缩实验,在变形温度为800~1200℃、应变速率为0.01~50 s^(-1)的范围内研究了9310钢的热变形行为。通过不同热变形参数对自扩散系数D和杨氏模量E的影响,建立了... 采用Gleeble-3800热模拟试验机对9310钢进行了变形量为70%的等温恒应变速率压缩实验,在变形温度为800~1200℃、应变速率为0.01~50 s^(-1)的范围内研究了9310钢的热变形行为。通过不同热变形参数对自扩散系数D和杨氏模量E的影响,建立了基于物理参数的本构模型,同时基于实验数据构建了BP神经网络本构模型。结果表明:9310钢为负温度正应变速率敏感性材料,且流动应力随变形温度的升高和应变速率的降低而减小。基于不同条件构建的物理本构模型和BP神经网络模型的相关系数r均大于0.98,但BP神经网络模型的r值可达0.996,平均绝对相对误差为3.1%。经过流动应力曲线、相关系数和平均绝对相对误差的综合对比,得出BP神经网络模型对预测9310钢的流动行为具有较好的适用性。 展开更多
关键词 9310钢 热变形行为 物理本构模型 bp神经网络模型
下载PDF
基于EMD分解和Levy-SSA-BP神经网络的齿轮故障诊断
15
作者 徐婧雯 杨平 阴晓俊 《机械传动》 北大核心 2024年第5期152-157,共6页
为解决齿轮磨损早期故障诊断问题,提出了一种基于经验模态分解(Empirical Mode Decomposition,EMD)和算法优化反向传播(Back Propagation,BP)神经网络的故障诊断方法。首先,将声发射信号进行经验模态分解,得到本征模函数(Intrinsic Mode... 为解决齿轮磨损早期故障诊断问题,提出了一种基于经验模态分解(Empirical Mode Decomposition,EMD)和算法优化反向传播(Back Propagation,BP)神经网络的故障诊断方法。首先,将声发射信号进行经验模态分解,得到本征模函数(Intrinsic Mode Function,IMF);其次,计算各IMF分量与原始信号的相关系数,并对各个分量进行特征提取,构成特征矩阵;最后,将特征矩阵放入经过Levy飞行和麻雀搜索算法优化后的BP神经网络中进行识别。对比BP神经网络和麻雀搜索算法优化后的神经网络,本文提出的算法准确率更高,且对轻微磨损故障的识别能力更好,可以用于早期齿轮故障诊断。 展开更多
关键词 齿轮箱 声发射 故障诊断 bp神经网络 麻雀搜索算法 Levy飞行 经验模态分解
下载PDF
基于BP神经网络构建简化翼结构动态代理模型
16
作者 胡金龙 李海波 +1 位作者 崔高伟 孔凡金 《航天器环境工程》 CSCD 2024年第4期439-444,共6页
建立精确且可信度高的代理模型是数字孪生技术中的关键环节之一。为了研究航天结构动力学中动态代理模型的构建方法,选择简化翼结构作为研究对象,分别利用单点正弦定频激励及全场加速度扫频激励获得结构在瞬态动力学分析下的位移和加速... 建立精确且可信度高的代理模型是数字孪生技术中的关键环节之一。为了研究航天结构动力学中动态代理模型的构建方法,选择简化翼结构作为研究对象,分别利用单点正弦定频激励及全场加速度扫频激励获得结构在瞬态动力学分析下的位移和加速度响应;将时间和部分节点响应结果作为输入,将希望关注的节点处的响应值作为输出,利用BP神经网络构建动态代理模型,当所建立的代理模型精度达标后即构建了翼结构瞬态动力学的动态代理模型。该法构建的模型不仅可用于快速预测多个节点的位移和加速度响应,亦可为后续构建航天复杂结构动力学数字孪生体奠定基础。 展开更多
关键词 数字孪生体 结构动力学 动态代理模型 bp神经网络 瞬态动力学
下载PDF
基于BP神经网络和二次指数平滑法组合预测模型的安徽省物流需求预测
17
作者 徐健 桂海霞 《山东交通学院学报》 CAS 2024年第3期39-45,共7页
为准确预测安徽省的物流需求,从经济发展、产量结构、地区贸易和消费水平4方面选取安徽省的地区生产总值,第一、二、三产业产值,社会消费品零售总额,固定资产投资,人均消费性支出7个影响因素作为安徽省物流需求评价指标,以安徽省货运量... 为准确预测安徽省的物流需求,从经济发展、产量结构、地区贸易和消费水平4方面选取安徽省的地区生产总值,第一、二、三产业产值,社会消费品零售总额,固定资产投资,人均消费性支出7个影响因素作为安徽省物流需求评价指标,以安徽省货运量作为物流需求规模输出指标,采用灰色关联分析计算安徽省物流需求评价指标与物流需求规模间的关联度,判断评价指标的合理性。通过夏普利值法将BP神经网络预测模型和二次指数平滑法预测模型组合,预测2017—2021年安徽省物流需求。结果表明:BP神经网络预测模型、二次指数平滑法预测模型及二者的组合预测模型预测结果的平均相对误差分别为4.58%、6.70%、3.99%,组合预测模型的平均相对误差最小。通过组合预测模型预测2022—2024年安徽省物流需求分别为405 004.96万t、407 142.09万t、409 108.95万t,安徽省货运量呈持续增长趋势,但增幅降低。安徽省应加快传统物流向智慧物流的转移速度,扩大内需,加强物流枢纽城市间的联系,加速区域一体化发展步伐,确保物流高质量发展。 展开更多
关键词 组合预测模型 bp神经网络模型 二次指数平滑法模型 物流需求 预测
下载PDF
基于BP神经网络的雪茄原料感官质量预测模型构建
18
作者 侯冰清 王硕立 +5 位作者 张友杰 曹阳 时向东 丁松爽 刘冰洋 王以慧 《中国农学通报》 2024年第27期126-133,共8页
本研究旨在利用BP神经网络技术,深入分析并预测雪茄原料的常规化学成分与其感官质量之间的复杂关系。通过收集四川、湖北、云南、湖南和尼加拉瓜雪茄烟叶常规化学成分数据作为输入变量,结合雪茄原料各项感官质量指标作为输出变量,成功... 本研究旨在利用BP神经网络技术,深入分析并预测雪茄原料的常规化学成分与其感官质量之间的复杂关系。通过收集四川、湖北、云南、湖南和尼加拉瓜雪茄烟叶常规化学成分数据作为输入变量,结合雪茄原料各项感官质量指标作为输出变量,成功构建了拓扑结构为6-9-1的BP神经网络模型。该模型不仅能够准确预测雪茄原料的感官质量评吸结果,而且揭示了不同产区雪茄烟叶在化学成分和感官质量方面的独特特征。研究表明,所检测样本中,国内4个主产区雪茄烟叶总糖、还原糖、烟碱、氯含量均高于尼加拉瓜烟叶,尼加拉瓜烟叶香气质和香气量得分较高。四川烟叶刺激性得分较低,湖北产区雪茄烟叶余味得分较高,云南烟叶杂气得分较低,湖南烟叶燃烧性和灰色得分较高。本研究雪茄烟叶样本的常规化学成分和感官质量指标统计特征较好,基本服从正态分布。所构建的BP神经网络模型的预测值与实际值间差异较小,其中余味、刺激性、灰色和总分的相关系数均在0.9以上。在训练集、验证集和测试集的预测值和实际值误差中,除总分误差区间较大外,剩余多数指标误差区间在0~0.5范围内的比例达到85%以上。BP神经网络所建立的雪茄原料感官质量预测模型拟合效果较好。本研究的成功实施为基于常规化学成分快速、准确地预测雪茄原料感官质量提供了有力支持,有助于推动中式雪茄烟行业的创新发展。 展开更多
关键词 雪茄原料 常规化学成分 感官质量 bp神经网络模型 预测模型
下载PDF
BP神经网络优化Stearns-Noechel模型的羊毛色纺纱配色
19
作者 史帅杰 李启正 +4 位作者 裘柯槟 朱杰 张斌 纪乐福 陈维国 《毛纺科技》 CAS 北大核心 2024年第4期111-117,共7页
为了提升羊毛色纺纱配色的精确度,通过数理统计方法研究颜色特征中的色相、明度、饱和度与Stearns-Noechel模型参数M值之间的关系,采用BP神经网络对Stearns-Noechel模型参数M值进行优化,并与传统的最优平均M值和波长优化M值等方法进行... 为了提升羊毛色纺纱配色的精确度,通过数理统计方法研究颜色特征中的色相、明度、饱和度与Stearns-Noechel模型参数M值之间的关系,采用BP神经网络对Stearns-Noechel模型参数M值进行优化,并与传统的最优平均M值和波长优化M值等方法进行对比。结果表明:采用BP神经网络优化Stearns-Noechel模型的配色方法比其他2种传统优化方法在颜色预测精确度上都有提高。在99个羊毛混色纱试验样本中,BP神经网络优化方法得到的平均色差最小,为1.1773,其中色差小于1的样本占54%,结合颜色特征采用BP神经网络优化的Stearns-Noechel模型参数具有较好的效果,对羊毛色纺纱的颜色预测精确度有较大的提高。 展开更多
关键词 色纺纱 Stearns-Noechel模型 bp神经网络 颜色预测 颜色特征
下载PDF
基于MFO优化BP神经网络构建冷鲜肉品质预测模型
20
作者 王丽 闫子康 +1 位作者 杜金 王远亮 《食品工业科技》 CAS 北大核心 2024年第21期310-321,共12页
为能准确预测冷鲜肉在贮藏中品质的变化规律及质量安全,本文探究贮藏温度(0、4和25℃)对冷鲜肉菌落总数、TVB-N、pH、水分含量、色度和生物胺含量的影响,确定冷鲜肉的特征品质指标。基于反向传播(Backpropagation,BP)神经网络和飞蛾火... 为能准确预测冷鲜肉在贮藏中品质的变化规律及质量安全,本文探究贮藏温度(0、4和25℃)对冷鲜肉菌落总数、TVB-N、pH、水分含量、色度和生物胺含量的影响,确定冷鲜肉的特征品质指标。基于反向传播(Backpropagation,BP)神经网络和飞蛾火焰优化(Moth-Flame Optimization,MFO)BP神经网络,利用特征指标作为训练数据,构建不同贮藏温度下冷鲜肉的品质预测模型,快速准确评价和预测食品的质量安全。结果表明,不同贮藏温度下冷鲜肉的菌落总数、pH、TVB-N、色泽和生物胺含量随着贮藏时间的延长均呈上升趋势(P<0.05),且各指标在不同贮藏温度下的变化规律不一致,温度越高,腐败变质的速度越快。通过相关性分析得出菌落总数和TVB-N为冷鲜肉品质特征指标,以特征指标为训练数据构建BP神经网络和MFO优化BP神经网络模型。结果显示,MFO优化BP神经网络优于单一的BP神经网络模型,指标菌落总数和TVB-N通过BP神经网络模型训练后的R值分别为0.95018、0.94283,通过MFO算法优化训练后的R值分别为0.97538、0.98001,更接近于1,且优化后的RMSE、MSE和MAE值相对较小,其模型拟合度更好,在整个贮藏期的预测性能更好,准确率更高。因此,MFO优化BP神经网络可用于预测冷鲜肉在贮藏过程中品质的变化规律。 展开更多
关键词 冷鲜肉 松鼠葡萄球菌 预测模型 反向传播(bp)神经网络 飞蛾火焰优化(MFO)bp神经网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部