期刊文献+
共找到4,702篇文章
< 1 2 236 >
每页显示 20 50 100
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
1
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 bp神经网络模型 核主成分分析(KPCA) 总磷浓度
下载PDF
基于GA-BP神经网络岩石单轴抗压强度预测模型研究
2
作者 张奥宇 杨科 +1 位作者 池小楼 张杰 《煤》 2025年第1期6-10,17,共6页
为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-B... 为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-BP神经网络对煤矿砂岩与泥岩单轴抗压强度进行了预测,并与传统的BP神经网络和非线性回归分析法进行了比较。研究结果表明,GA-BP神经网络预测模型在预测砂岩和泥岩单轴抗压强度与弹性模量间关系上具有较高的精度和泛化能力,能够有效地解决传统BP神经网络的局部最优和过拟合问题,相较于非线性回归分析,拥有更强的非线性关系建模能力,是一种适用于砂岩与泥岩单轴抗压强度预测的有效方法。 展开更多
关键词 岩石力学参数 非线性回归 bp神经网络 遗传算法 预测模型
下载PDF
基于BP神经网络的用户感性评价模型构建及应用
3
作者 董圣泽 王肖烨 +2 位作者 王若羽 杨景浩 郭凌志 《包装工程》 北大核心 2025年第2期82-90,共9页
目的 充分利用网络购物平台用户评论,寻找形态因子最佳组合以指导产品造型设计,解决部分产品难以契合用户感性需求的问题。方法 利用网络爬虫抓取某网络购物平台的用户评论并利用TF-IDF算法将其量化;使用主成分分析法,选取感性评价指标... 目的 充分利用网络购物平台用户评论,寻找形态因子最佳组合以指导产品造型设计,解决部分产品难以契合用户感性需求的问题。方法 利用网络爬虫抓取某网络购物平台的用户评论并利用TF-IDF算法将其量化;使用主成分分析法,选取感性评价指标,借助形态分析法将目标产品分解为多个主要结构;运用BP神经网络构建用户感性评价模型,遍历所有形态因子组合以确定最优搭配。结果 以电饭煲为例,根据所构建模型可预测各评价指标最高的形态因子组合,该模型均方误差为0.0049,决定系数为0.9287,模型精度符合要求,利用问卷调查法进一步证明了预测结果有参考价值。结论 基于BP神经网络构建的模型拥有快速寻找最佳形态因子组合的能力,利用网络购物平台用户评论作为训练样本能够解决人工搜集或问卷调查获取样本时间长、成本高、市场响应慢、样本分布不均匀等问题。用户感性评价模型预测结果对设计师精准满足用户需求有重要的指导意义。 展开更多
关键词 用户感性评价模型 bp神经网络 感性意象评价 电饭煲
下载PDF
基于病证结合及BP神经网络的艾滋病发病预测模型构建
4
作者 张艳燕 马笑凡 +3 位作者 王梦琳 李星锐 崔伟锋 潘玉颖 《中国现代医药杂志》 2025年第1期1-6,共6页
目的通过筛选艾滋病(Acquired immune deficiency syndrome,AIDS)发病的危险因素,构建基于病证结合及误差反向传播(Back error propagation,BP)神经网络的AIDS发病预测模型。方法对2010年10月~2022年3月期间河南省391例无症状HIV感染者... 目的通过筛选艾滋病(Acquired immune deficiency syndrome,AIDS)发病的危险因素,构建基于病证结合及误差反向传播(Back error propagation,BP)神经网络的AIDS发病预测模型。方法对2010年10月~2022年3月期间河南省391例无症状HIV感染者的病例资料(包括人口学资料、AIDS相关行为情况、实验室指标、中医证素、终点事件)进行回顾性分析,使用COX比例风险回归模型进行单因素、多因素分析,初步筛选出纳入AIDS发病预测模型的变量,将纳入病例以7:3比例随机分成训练集、测试集,用BP神经网络建立AIDS发病预测模型,运用测试集来评价模型的预测性能,最终利用混淆矩阵和ROC曲线对模型准确率进行评估。结果本研究共选取391例病例,出现终点事件103例,经过COX比例风险回归模型进行单因素、多因素分析并共线性诊断后,最终纳入模型变量有气虚、湿热、婚姻状况、CD4+T淋巴细胞计数、年龄、病程、感染途径,同时,通过混淆矩阵和ROC曲线进行模型评估,训练集与测试集准确率分别为76.3%、71.7%,ROC曲线评估准确率为76.1%。结论基于病证结合及BP神经网络构建的AIDS发病预测模型具有良好的预测效能,较好的适应能力,可以对AIDS的发病进行准确预测,为AIDS防控策略的制定提供依据。 展开更多
关键词 艾滋病 无症状HIV感染 病证结合 bp神经网络 发病预测模型
下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:1
5
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
下载PDF
基于BP神经网络的EHB主缸液压力估计
6
作者 史彪飞 王磊 +2 位作者 梁海强 李荣利 梁超 《汽车技术》 北大核心 2025年第1期57-62,共6页
电子液压制动(EHB)系统主缸液压力估计对降低EHB的传感器依赖性至关重要,基于BP神经网络进行主缸液压力估计。首先开展了实车道路试验,并采集车速、主缸活塞位移、主缸活塞速度和主缸液压力等数据。然后,以主缸活塞位移和主缸活塞速度... 电子液压制动(EHB)系统主缸液压力估计对降低EHB的传感器依赖性至关重要,基于BP神经网络进行主缸液压力估计。首先开展了实车道路试验,并采集车速、主缸活塞位移、主缸活塞速度和主缸液压力等数据。然后,以主缸活塞位移和主缸活塞速度为特征输入、以实际主缸液压力为目标输出建立BP神经网络,并采用训练集数据及梯度下降算法对BP神经网络进行训练。最后,利用测试集数据对液压力估计效果进行验证。结果表明,所提算法比基于动态位移压力模型和基于LSTM的估计算法估计误差分别减小38%和15%。 展开更多
关键词 电子液压制动 主缸液压力估计 位移压力模型 bp 神经网络
下载PDF
基于GM(1,1)-BP神经网络的建筑电力短期预测
7
作者 宋杨 顾亦然 张腾飞 《软件导刊》 2025年第1期9-14,共6页
随着国家“双碳”目标的提出,公共建筑节约能源愈发重要,建筑电力数据短期预测有助于合理调控用电。为此,提出一种结合灰色模型GM(1,1)和BP神经网络的组合预测模型。首先,通过灰色关联筛选数据,根据灰色模型仅需少量样本的优点,预测出... 随着国家“双碳”目标的提出,公共建筑节约能源愈发重要,建筑电力数据短期预测有助于合理调控用电。为此,提出一种结合灰色模型GM(1,1)和BP神经网络的组合预测模型。首先,通过灰色关联筛选数据,根据灰色模型仅需少量样本的优点,预测出短期内的用电数据;其次,将预测结果作为BP神经网络的输入变量,通过网络反向学习原始数据与GM(1,1)预测值的差值,提高模型的预测精度。以高校公共建筑用电数据为研究目标,通过组合模型预测下一阶段用电,并与4种预测模型进行比较。结果表明,该组合模型预测误差最小,准确性最高。 展开更多
关键词 灰色模型 bp神经网络 电力预测 建筑节能
下载PDF
基于BP神经网络的高校教师精准教学能力评价模型构建
8
作者 魏培文 朱珂 +3 位作者 叶海智 张潍杰 张利远 闫娟 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-116,共9页
通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能... 通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能力评价模型研究.首先,以理论研究为基础,对精准教学能力进行等级划分并构建评价指标框架,运用层级分析法建立指标权重;其次,利用BP神经网络智能学习的特性,以不同数据类型的指标值为输入,对应能力综合值为输出,检验精准教学能力分级及指标权重的合理性,进而生成较为客观的评价模型;最后,利用开发的评价系统和调查问卷进行样本数据采集和模型检验,从神经网络对数据的分类、拟合及仿真结果来看,模型能够对高校教师的精准教学能力进行客观评价,教师对模型测量结果的准确性也具有较高认可度. 展开更多
关键词 教育数字化转型 高校教师 精准教学能力 评价模型 bp神经网络
下载PDF
基于HSS-MCC融合模型及SSA-BP神经网络开展深基坑超大变形预测研究
9
作者 倪小东 张宇科 +3 位作者 焉磊 王东兴 徐硕 王媛 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期35-45,共11页
软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神... 软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神经网络在基坑变形预测中得到广泛应用,但在训练过程中,权阈值易陷入局部最优解,影响预测的准确性.据此,依托南京地区典型软土深基坑工程,采用Midas中的HSS模型与MCC模型进行分析,比对两种模型的桩体变形量差异,并基于最小二乘准则对两模型进行线性融合,融合模型可对后续区段监测数据进行校准及补充.通过融合麻雀搜索算法对BP神经网络进行优化,在其训练过程中快速收敛,得到全局最优的权阈值,依托狭长基坑已开挖区段监测数据学习训练,进而依据后续区段浅部开挖揭露深部变形特征,预测结果与实测值吻合度较高.研究结果对软土地区深基坑大变形的预测研究具有重要参考价值. 展开更多
关键词 深基坑 大变形 HSS模型 MCC模型 bp神经网络 麻雀搜索算法
下载PDF
基于BP神经网络的UHPC直剪承载力预测模型
10
作者 穆清君 李贤仰 +2 位作者 李思凡 宋显斌 潘仁胜 《世界桥梁》 北大核心 2024年第6期94-99,共6页
为提供准确的UHPC直剪承载力,以指导UHPC结构设计,建立一种基于BP神经网络的UHPC直剪承载力预测模型。该方法基于机器学习中的反向传播人工神经网络(BP-ANN),搜集现有相关试验数据并建立数据库,将混凝土抗压强度、受剪面积、纤维特征参... 为提供准确的UHPC直剪承载力,以指导UHPC结构设计,建立一种基于BP神经网络的UHPC直剪承载力预测模型。该方法基于机器学习中的反向传播人工神经网络(BP-ANN),搜集现有相关试验数据并建立数据库,将混凝土抗压强度、受剪面积、纤维特征参数、钢筋参数和侧向约束应力指定为输入特征参数,将直剪承载力指定为输出量,利用数据库对BP-ANN模型进行训练。将模型预测值与试验实测值和现有计算模型的结果进行对比,并采用SHAP算法对各参数重要性进行分析。结果表明:BP-ANN模型具有更好的预测效果,其相关系数R2达到0.953,平均绝对误差MAE为1.015,模型训练结果理想,可应用于实际的数据处理分析;侧向约束应力对直剪承载力的影响最大,钢筋参数影响最小。 展开更多
关键词 桥梁工程 UHPC 直剪承载力 bp神经网络 预测模型 参数分析 SHAP算法
下载PDF
面向2035的基础教育教师需求规模预测——基于BP神经网络模型
11
作者 高晓清 吴敏 《湖南师范大学教育科学学报》 CSSCI 北大核心 2024年第5期64-75,共12页
基于2003—2021年基础教育教师规模及其影响因素的变动情况,采用BP神经网络模型对2023—2035年基础教育教师需求和师资盈缺情况进行预测,发现基础教育教师总体需求规模呈现不断缩小的趋势,其中学前教育和小学阶段教师需求持续下降,初中... 基于2003—2021年基础教育教师规模及其影响因素的变动情况,采用BP神经网络模型对2023—2035年基础教育教师需求和师资盈缺情况进行预测,发现基础教育教师总体需求规模呈现不断缩小的趋势,其中学前教育和小学阶段教师需求持续下降,初中和普通高中阶段教师需求呈先增后减趋势。这一期间,师资需求振幅较大,学前教育和小学阶段师资需求将出现阶段性短缺或过剩,这对教师资源的供给弹性和适应性提出了更高要求。基于以上发现,管理部门应稳定部署师范生招生计划,推进教师供需均衡;加强教育体系内贯通协作,促进教师合理流动;催生社会需求新业态,激励教师多元就业。 展开更多
关键词 基础教育 教师需求 师资盈缺 bp神经网络模型 2035
下载PDF
基于最小二乘法和BP神经网络的磁流变阻尼器H-B模型参数辨识方法
12
作者 张忠奎 张晗 闫洋洋 《机床与液压》 北大核心 2024年第4期126-131,共6页
针对Bingham模型磁流变阻尼器由于剪切稀化效应带来的阻尼力计算误差,在理论和仿真分析的基础上,提出一种最小二乘法和BP神经网络相结合的方法,对磁流变阻尼器H-B模型进行参数辨识,获得各参数与电流的关系,从而对磁流变阻尼器的阻尼力... 针对Bingham模型磁流变阻尼器由于剪切稀化效应带来的阻尼力计算误差,在理论和仿真分析的基础上,提出一种最小二乘法和BP神经网络相结合的方法,对磁流变阻尼器H-B模型进行参数辨识,获得各参数与电流的关系,从而对磁流变阻尼器的阻尼力进行准确计算。最后通过磁流变阻尼器实验对理论方法进行验证。结果表明:借助于磁流变阻尼器的仿真分析,最小二乘法和BP神经网络相结合的磁流变阻尼器H-B模型参数辨识方法精确度高、吻合性好,验证了参数辨识结果的通用性及准确性。 展开更多
关键词 磁流变液阻尼器 H-B模型 最小二乘法 bp神经网络
下载PDF
日光温室环境因子预测模型及应用——基于BP神经网络 被引量:2
13
作者 宋财柱 塔娜 +3 位作者 闫彩霞 孙云峰 甄琦 李晓凯 《农机化研究》 北大核心 2024年第10期175-179,186,共6页
为探讨北方日光温室内空气温湿度的变化规律,预测其变化趋势,进而确定合理的调控措施,采用L-M算法建立BP神经网络预测模型;选择S型函数作为网络激活函数,建立一种适用于北方日光温室空气温湿度环境因子的模拟预测模型。选取正常生产的... 为探讨北方日光温室内空气温湿度的变化规律,预测其变化趋势,进而确定合理的调控措施,采用L-M算法建立BP神经网络预测模型;选择S型函数作为网络激活函数,建立一种适用于北方日光温室空气温湿度环境因子的模拟预测模型。选取正常生产的日光温室为试验基地进行数据采集,采用皮尔逊相关系数确定模拟预测模型的输入因子,从1个月1440组实测数据中选取前29天的数据进行训练,对最后一天预测出的数据进行验证。研究结果表明:分段预测的预测值与实测值的符合度值大于全天预测,且分段预测的符合度大于0.99,均方根误差小于0.4,模型可用于模拟和预测北方日光温室大棚内空气温度与湿度的变化趋势,具有良好效果。 展开更多
关键词 日光温室 环境因子 bp神经网络 预测模型
下载PDF
基于BP神经网络的儿童乘员头部损伤预测模型及评估参数研究 被引量:1
14
作者 王彦鑫 李海岩 +2 位作者 崔世海 贺丽娟 吕文乐 《汽车工程》 EI CSCD 北大核心 2024年第2期329-336,共8页
智能座舱与虚拟测评规程的推广,给乘员损伤评价带来新挑战,损伤机理与损伤风险评估参数更加多样化。本文基于图斯特6岁儿童乘员损伤仿生模型与BP神经网络算法构建正面100%重叠刚性壁障工况中乘员坐姿角度与头部损伤指标相关性预测模型,... 智能座舱与虚拟测评规程的推广,给乘员损伤评价带来新挑战,损伤机理与损伤风险评估参数更加多样化。本文基于图斯特6岁儿童乘员损伤仿生模型与BP神经网络算法构建正面100%重叠刚性壁障工况中乘员坐姿角度与头部损伤指标相关性预测模型,探究不同坐姿下头部损伤风险以及不同评价指标之间的相关性与差异性。结果表明,构建的相关性损伤预测模型具有良好的可信度(R2>0.90),可以用于损伤预测与分析。现有头部损伤评价指标在小角度坐姿范围内(95°~108°)对头损伤评估及预测具有良好的一致性,但是对于大角度坐姿乘员,不同损伤评价指标对头部损伤风险的评估存在显著差异。因此,目前实施的头部损伤评价参数具有局限性,未来虚拟测评中应综合运动学和生物力学参数对头部损伤风险进行更加全面的评估。该研究结果可以为儿童约束系统的改善、虚拟测评以及大角度坐姿乘员头部损伤评价参数的选取提供数据与理论支撑。 展开更多
关键词 损伤仿生模型 儿童乘员 bp神经网络 虚拟测评 坐姿角度
下载PDF
基于灰色GM-BP神经网络组合模型的中国镍原矿多情景需求预测 被引量:1
15
作者 周文潇 詹成 +2 位作者 张周益 阮晟哲 成金华 《资源与产业》 2024年第2期53-66,共14页
2016年我国颁布《全国矿产资源规划(2016—2020年)》,首次将镍列为战略性矿产资源。我国是全球最大的镍消费国,但镍资源储量少,对外依存度高,科学预测镍原矿需求量对保障镍矿产业链与供应链安全具有重要的现实意义。从需求侧出发,利用... 2016年我国颁布《全国矿产资源规划(2016—2020年)》,首次将镍列为战略性矿产资源。我国是全球最大的镍消费国,但镍资源储量少,对外依存度高,科学预测镍原矿需求量对保障镍矿产业链与供应链安全具有重要的现实意义。从需求侧出发,利用灰色关联度法选取中国不锈钢产量、人均GDP、电镀行业市场规模、城镇化率、产业结构、新能源汽车产量作为镍原矿需求情景预测的驱动变量,再在灰色GM(1,1)模型预测基础上,与BP神经网络算法相结合,构建基于残差优化的GM-BP组合模型,对2025—2035年中国镍原矿需求展开多情景预测。研究结果表明:组合模型实现了对小样本非线性时间序列数据的有效预测,且比GM(1,1)模型拟合误差更小,预测精度更高;根据组合模型,2025年、2030年、2035年我国镍原矿多情景需求均值分别为182.22万t、272.08万t、395.17万t,“十四五”“十五五”“十六五”期间需求年均增长4.26%、10.54%、9.78%。镍原矿需求呈稳定上升态势,镍矿供需矛盾将进一步加剧,我国必须提高镍供应能力,降低对进口镍的依赖程度。对此,提出如下政策建议:1)推进国内不锈钢产业的转型升级,优化生产工艺和产品结构,推广新型合金材料的应用;2)加大对镍矿勘探和开发的支持力度,如鼓励矿业企业技术创新,提高勘探效率和精度,同时积极推动国际合作,吸引国外先进技术、设备进入国内市场;3)促进进口多元化,与多个供应国建立合作关系,鼓励国内企业参与海外镍矿项目。 展开更多
关键词 GM-bp模型 bp神经网络 镍原矿需求 情景预测
下载PDF
基于BP神经网络的乒乓球优秀女子单打比赛结果预测模型构建及仿真应用 被引量:1
16
作者 修霆喆 于红妍 黄雯妍 《哈尔滨体育学院学报》 2024年第2期89-96,共8页
为构建优秀女子运动员技战术表现与比赛获胜的理论模型,合理安排技战术训练及比赛策略提供参考借鉴。运用录像观察法、数理统计法及BP神经网络构建乒乓球优秀女子单打比赛结果预测模型。在此基础上,利用预测模型仿真分析新型塑料球时代... 为构建优秀女子运动员技战术表现与比赛获胜的理论模型,合理安排技战术训练及比赛策略提供参考借鉴。运用录像观察法、数理统计法及BP神经网络构建乒乓球优秀女子单打比赛结果预测模型。在此基础上,利用预测模型仿真分析新型塑料球时代优秀女子乒乓球运动员在不同水平技战术组合下的比赛获胜模式。本文构建的预测模型R为0.978,R~2为0.956,平均绝对误差为0.0085,模型精度达到98.4%;仿真分析1 024种技战术段组合结果可知,568种组合的预测结果为获胜,456种组合的预测结果为失败。结论:基于BP神经网络构建的乒乓球优秀女子单打比赛结果预测模型拟合效果佳,个案实证预测效果较好,具有较高的预测性能;新型塑料球时代优秀女子运动员在单打比赛中,各技战术段之间的补偿效应因技战术段和等级而有所不同,评估总分17分为女子单打比赛胜负的分界点,不同水平技战术段组合的比赛评估总分大于17分即可取得比赛胜利,低于17分则会落败。 展开更多
关键词 乒乓球 女子单打 bp神经网络 预测模型
下载PDF
基于物理参数和BP神经网络的9310钢本构模型研究
17
作者 王宇航 罗拴谋 +4 位作者 董显娟 徐勇 黄龙 涂泽立 李佳俊 《塑性工程学报》 CAS CSCD 北大核心 2024年第8期117-124,共8页
采用Gleeble-3800热模拟试验机对9310钢进行了变形量为70%的等温恒应变速率压缩实验,在变形温度为800~1200℃、应变速率为0.01~50 s^(-1)的范围内研究了9310钢的热变形行为。通过不同热变形参数对自扩散系数D和杨氏模量E的影响,建立了... 采用Gleeble-3800热模拟试验机对9310钢进行了变形量为70%的等温恒应变速率压缩实验,在变形温度为800~1200℃、应变速率为0.01~50 s^(-1)的范围内研究了9310钢的热变形行为。通过不同热变形参数对自扩散系数D和杨氏模量E的影响,建立了基于物理参数的本构模型,同时基于实验数据构建了BP神经网络本构模型。结果表明:9310钢为负温度正应变速率敏感性材料,且流动应力随变形温度的升高和应变速率的降低而减小。基于不同条件构建的物理本构模型和BP神经网络模型的相关系数r均大于0.98,但BP神经网络模型的r值可达0.996,平均绝对相对误差为3.1%。经过流动应力曲线、相关系数和平均绝对相对误差的综合对比,得出BP神经网络模型对预测9310钢的流动行为具有较好的适用性。 展开更多
关键词 9310钢 热变形行为 物理本构模型 bp神经网络模型
下载PDF
基于BP神经网络构建简化翼结构动态代理模型
18
作者 胡金龙 李海波 +1 位作者 崔高伟 孔凡金 《航天器环境工程》 CSCD 2024年第4期439-444,共6页
建立精确且可信度高的代理模型是数字孪生技术中的关键环节之一。为了研究航天结构动力学中动态代理模型的构建方法,选择简化翼结构作为研究对象,分别利用单点正弦定频激励及全场加速度扫频激励获得结构在瞬态动力学分析下的位移和加速... 建立精确且可信度高的代理模型是数字孪生技术中的关键环节之一。为了研究航天结构动力学中动态代理模型的构建方法,选择简化翼结构作为研究对象,分别利用单点正弦定频激励及全场加速度扫频激励获得结构在瞬态动力学分析下的位移和加速度响应;将时间和部分节点响应结果作为输入,将希望关注的节点处的响应值作为输出,利用BP神经网络构建动态代理模型,当所建立的代理模型精度达标后即构建了翼结构瞬态动力学的动态代理模型。该法构建的模型不仅可用于快速预测多个节点的位移和加速度响应,亦可为后续构建航天复杂结构动力学数字孪生体奠定基础。 展开更多
关键词 数字孪生体 结构动力学 动态代理模型 bp神经网络 瞬态动力学
下载PDF
泵站水电转换系数的BP神经网络模型
19
作者 周璐 张健 +3 位作者 孟凡继 黄国情 金秋 赵广举 《水利经济》 北大核心 2024年第6期71-75,共5页
为实现区域性水电转换系数的智能预测和动态修正,以江苏省连云港市为研究区,采用贝叶斯正则化算法进行含噪数据分析,构建了大中型灌区典型提水泵站水电转换系数的BP神经网络模型,并通过泵站实测数据对模型进行验证。结果表明,连云港市... 为实现区域性水电转换系数的智能预测和动态修正,以江苏省连云港市为研究区,采用贝叶斯正则化算法进行含噪数据分析,构建了大中型灌区典型提水泵站水电转换系数的BP神经网络模型,并通过泵站实测数据对模型进行验证。结果表明,连云港市泵站水电转换系数区域特性影响因素主要包括配套功率、流量、转速和效率,模型拟合优度为0.961,且泵站预测值与实测值误差均在允许范围内。由该模型及56个建模数据得到连云港市泵站水电转换系数分布区间为[11.03,69.30];通过参数优化所建立的BP神经网络模型能够实现区域性泵站水电转换系数的智能预测和动态修正,为多元水泵承包主体实行用电定额节水管控提供了新思路。 展开更多
关键词 灌区 提水泵站 水电转换系数 相关性分析 bp神经网络模型
下载PDF
基于整车动力学响应及BP神经网络的纯纵滑轮胎模型辨识
20
作者 江会华 祝栎严 +3 位作者 王爱春 刘卫东 时乐泉 吴晓建 《南昌大学学报(工科版)》 CAS 2024年第4期513-523,530,共12页
目前轮胎模型的辨识主要基于滑移率-纵向力或侧偏角-侧向力等已知数据的非线性拟合,这些数据需用专用台架或轮胎六分力仪测量获得,高昂成本限制了此类方法的应用,故提出基于车载传感器和整车动力学响应的纯纵滑轮胎模型离线辨识方法,以... 目前轮胎模型的辨识主要基于滑移率-纵向力或侧偏角-侧向力等已知数据的非线性拟合,这些数据需用专用台架或轮胎六分力仪测量获得,高昂成本限制了此类方法的应用,故提出基于车载传感器和整车动力学响应的纯纵滑轮胎模型离线辨识方法,以低成本获取准确轮胎模型。在Carsim中构建与待辨识轮胎所在车辆相匹配的虚拟车辆动力学模型(对轮胎模型无匹配要求),仿真计算虚拟车辆在配备不同轮胎模型参数时的整车动力学响应,为BP神经网络提供训练样本,形成“不同轮胎模型参数-整车动力学响应”映射关系;采集装配了待辨识轮胎的车辆在制动工况下的状态响应,通过已训练的BP神经网络模型离线辨识轮胎模型参数;在Simulink-Carsim联合仿真环境下,Gim和UniTire轮胎模型的辨识结果验证了所提方法可准确辨识。 展开更多
关键词 轮胎模型辨识 bp神经网络 整车制动实验 Gim轮胎模型 UniTire轮胎模型
下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部