期刊文献+
共找到748篇文章
< 1 2 38 >
每页显示 20 50 100
基于BP神经网络聚类算法的P2P流量识别 被引量:3
1
作者 赵魏雨 唐文秀 《化工自动化及仪表》 CAS 2013年第4期515-518,551,共5页
在研究有监督机器学习算法中的BP神经网络算法和无监督的机器学习算法中的k-means聚类算法的基础上,提出一种半监督的BP神经网络聚类算法对P2P流量进行识别。该算法具有有监督和无监督的机器学习算法的优点,能快速地进行精确的流量识别... 在研究有监督机器学习算法中的BP神经网络算法和无监督的机器学习算法中的k-means聚类算法的基础上,提出一种半监督的BP神经网络聚类算法对P2P流量进行识别。该算法具有有监督和无监督的机器学习算法的优点,能快速地进行精确的流量识别,即取少量离线的流量样本进行标记与分类,然后利用分类结果为聚类中心对大量在线流量进行聚类识别。这样既提高了效率,又能保证结果的准确性。利用BP神经网络对所采集的少量流量数据中每个流按包大小标准差、变换频率、平均值、包数目和总字节数5个特征进行分类,得出分类结果的特征均值,对大量的在线数据进行指导聚类。多次实际网络测试结果的准确率很高,证明该算法模型是可行的。 展开更多
关键词 P2P流量识别 bp神经网络聚类算法 标记与 加密流量
下载PDF
基于K-means聚类和BP神经网络的电梯能耗实时监测方法 被引量:1
2
作者 彭诚 《通化师范学院学报》 2024年第4期50-56,共7页
针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,... 针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,利用相似系数法进行相似度计算,获取相似系数.对相似电梯能耗数据进行小波分解获取高低频序列,分别采用LSSVM-GSA检测方法和均方加权处理方法对低频和高频部分进行处理,将两个结果进行重构,得到最终的实时监测结果 .仿真实验结果表明:所提方法能够获取高精度、低耗时、高稳定性的监测结果 . 展开更多
关键词 电梯能耗 K-MEANS算法 bp神经网络 数据清洗
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
3
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS算法 长短期记忆(LSTM)神经网络 鲁棒性
下载PDF
基于BP神经网络和C-Means聚类算法的水下导航适配区分类预测
4
作者 孙逸诺 舒洪博 +2 位作者 赵可欣 王佳峻 蒋栾坤 《中文科技期刊数据库(全文版)自然科学》 2024年第6期0107-0112,共6页
在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同... 在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同区域的重力异常特征分布不同,首先提出一种基于C-Means聚类算法的区域适配性标定方法,通过将海域划分为五类,对各区域进行适配性标定。然后,在此基础上,本文提出一种基于BP神经网络的适配区分类预测方法,对区域适配度进行预测。实验结果表明,本文提出的预测模型在训练集中的预测精度达到99%,而在测试集中模型的预测精度达到97%。由此可见本文提出的预测模型具有较好的迁移性能,能够帮助水下航行器进行精准定位。 展开更多
关键词 三次样条插值法 C-MEANS 算法 bp 神经网络模型 预测
下载PDF
基于遗传优化神经网络的电力潜在敏感用户画像聚类算法 被引量:2
5
作者 王海龙 李冠龙 +1 位作者 黄鑫磊 薛建德 《微型电脑应用》 2024年第1期138-140,144,共4页
为了解决电力潜在敏感用户画像聚类和识别结果准确度较低的问题,提出一种基于遗传优化神经网络的电力潜在敏感用户画像聚类算法。构建电力用户画像,精准刻画电力用户行为;选取电力用户画像的数值、时间、统计及聚类四种特征作为卷积神... 为了解决电力潜在敏感用户画像聚类和识别结果准确度较低的问题,提出一种基于遗传优化神经网络的电力潜在敏感用户画像聚类算法。构建电力用户画像,精准刻画电力用户行为;选取电力用户画像的数值、时间、统计及聚类四种特征作为卷积神经网络模型的输入,识别电力潜在敏感用户画像;采用改进遗传算法优化卷积神经网络,使得识别结果更为精准。实验结果表明,该方法能够聚类、识别电力潜在敏感用户画像,且聚类和识别的性能及准确度较好。 展开更多
关键词 遗传算法 卷积神经网络 用户画像 潜在敏感用户 算法 相异度函数
下载PDF
模糊聚类和LM算法改进BP神经网络的变压器故障诊断 被引量:38
6
作者 宋志杰 王健 《高压电器》 CAS CSCD 北大核心 2013年第5期54-59,共6页
在变压器故障诊断中,目前BP神经网络算法存在训练样本分布不均匀,收敛速度慢、容易陷于局部极小点等问题,导致整体的诊断性能下降。通过对模糊聚类及LM算法改进的神经网络深入研究,并引入变压器故障诊断中,该算法应用模糊聚类对搜集到... 在变压器故障诊断中,目前BP神经网络算法存在训练样本分布不均匀,收敛速度慢、容易陷于局部极小点等问题,导致整体的诊断性能下降。通过对模糊聚类及LM算法改进的神经网络深入研究,并引入变压器故障诊断中,该算法应用模糊聚类对搜集到的样本预处理,提高样本的质量,再用LM算法改进的神经网络来优化搜索方向,可以实现网络训练速度及测试精度的提高。通过实例仿真实验,验证了该方法能够有效诊断出变压器的故障。 展开更多
关键词 模糊 LM算法 bp神经网络 变压器 故障诊断
下载PDF
基于遗传算法和模糊聚类算法的改进BP神经网络风速预测 被引量:9
7
作者 吴钢 徐枫 +1 位作者 王冰 徐偲喆 《电子设计工程》 2016年第11期120-123,共4页
针对BP神经网络风速预测中存在的结构不确定以及网络过度拟合的问题,利用遗传算法的全局搜索能力和模糊聚类算法的数据筛选能力,分别对BP神经网络的结构与数据进行双重优化,提出了基于遗传算法和聚类算法的改进BP神经网络风速预测方法... 针对BP神经网络风速预测中存在的结构不确定以及网络过度拟合的问题,利用遗传算法的全局搜索能力和模糊聚类算法的数据筛选能力,分别对BP神经网络的结构与数据进行双重优化,提出了基于遗传算法和聚类算法的改进BP神经网络风速预测方法。仿真表明,改进风速后的预测方法大大提高了风速预测的准确性。 展开更多
关键词 短期风速预测 bp神经网络 遗传算法 算法 二次优化
下载PDF
基于神经网络的聚类算法研究
8
作者 胡钦华 党涛 邓见光 《电子设计工程》 2024年第22期186-190,共5页
聚类作为一种无监督学习算法,在处理大规模数据、参数值选择、噪声异常值等方面效果不佳。为了充分考虑算法的有效性和稳定性,该文将神经网络与传统聚类算法相结合,介绍了自组织特征映射、学习向量量化和自适应共振理论三种基于神经网... 聚类作为一种无监督学习算法,在处理大规模数据、参数值选择、噪声异常值等方面效果不佳。为了充分考虑算法的有效性和稳定性,该文将神经网络与传统聚类算法相结合,介绍了自组织特征映射、学习向量量化和自适应共振理论三种基于神经网络的聚类算法。并结合常见的距离度量和相似性度量来验证该类算法在自适应学习和噪声容忍性方面的优势,从而弥补传统聚类算法的不足。全文工作将进一步指导我们深入研究聚类算法在深度神经网络中的应用。 展开更多
关键词 神经网络 算法 距离度量 相似性度量
下载PDF
融合SOM神经网络与K-means聚类算法的用户信用画像研究
9
作者 罗博炜 罗万红 谭家驹 《铁路计算机应用》 2024年第7期14-19,共6页
为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Me... 为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Means算法进行聚类分析。通过真实在线借贷平台数据对所提方法进行验证,结果表明,该方法可提升用户信用画像分析的质量,更好地满足金融数据分析中对实时管理和风险控制的要求,为金融机构提供精准的决策支持。 展开更多
关键词 用户信用画像 SOM神经网络 K-MEANS算法 时间复杂度 风险控制
下载PDF
中国金融风险预警系统的构建研究——基于K-均值聚类算法和BP神经网络 被引量:22
10
作者 李梦雨 《中央财经大学学报》 CSSCI 北大核心 2012年第10期25-30,共6页
本文首先通过研究我国1994—2011年的经济数据,对关系到金融系统稳定的16项经济变量进行主成分分析,进而将所选变量归结为宏观经济、金融体系、对外经贸三个方面。在此基础上运用K—均值聚类算法,把金融系统风险状态分为四类。继而借助B... 本文首先通过研究我国1994—2011年的经济数据,对关系到金融系统稳定的16项经济变量进行主成分分析,进而将所选变量归结为宏观经济、金融体系、对外经贸三个方面。在此基础上运用K—均值聚类算法,把金融系统风险状态分为四类。继而借助BP神经网络建立了我国金融系统风险的预警模型,并通过2011年的数据对我国2012年金融系统运行状况进行了预测。预测结果表明我国2012年处于轻度风险状态,总需求的回落和资产泡沫的收缩将是影响我国金融系统稳定运行的主要问题。最后对我国如何预测并防范金融风险给出了政策建议。 展开更多
关键词 金融风险预警系统 主成分分析K-均值算法bp神经网络
下载PDF
基于模糊C均值聚类和概率神经网络的PEMFC故障诊断方法研究 被引量:2
11
作者 黄赵军 苏建徽 +3 位作者 解宝 施永 黄诚 瞿晓丽 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期475-483,共9页
为解决质子交换膜燃料电池电堆的故障分类问题,提出一种基于模糊C均值聚类和概率神经网络的故障诊断新方法。首先基于修正后的燃料电池电堆Fouquet等效电路模型,并结合电堆阻抗谱实验数据,得到电堆的正常、水淹、膜干和氧饥饿4种工作状... 为解决质子交换膜燃料电池电堆的故障分类问题,提出一种基于模糊C均值聚类和概率神经网络的故障诊断新方法。首先基于修正后的燃料电池电堆Fouquet等效电路模型,并结合电堆阻抗谱实验数据,得到电堆的正常、水淹、膜干和氧饥饿4种工作状态与电路模型参数的对应关系,进而提取合适的故障特征量作为聚类算法的特征输入。然后,利用模糊C均值聚类算法对故障样本进行聚类,形成标准聚类中心,并在此基础上,采用概率神经网络算法对故障样本实现多故障分类,有效剔除奇异数据并提高模型分类的正确率。最后,对200组实验数据进行实例分析,并与支持向量机和K最邻近方法进行对比,结果表明所提方法能对4种电堆工作状态进行快速识别,分类准确率达98.33%,验证了所提算法的有效性。 展开更多
关键词 质子交换膜燃料电池 算法 神经网络 故障诊断 故障特征量
下载PDF
基于改进K-Means聚类和BP神经网络的台区线损率计算方法 被引量:167
12
作者 李亚 刘丽平 +3 位作者 李柏青 易俊 王泽忠 田世明 《中国电机工程学报》 EI CSCD 北大核心 2016年第17期4543-4551,共9页
配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台... 配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台区线损率的方法,并通过编程加以实现。根据样本的电气特征参数,提出了改进K-Means聚类算法,将台区样本分类,解决了台区线损率数值分散的问题。在此基础上,采用LM算法优化的BP神经网络模型对样本数据按类进行训练,利用BP神经网络拟合样本线损率与电气特征参数之间的关系,得到其变化规律。以某地区601个台区样本数据为例进行仿真计算,验证了所提方法的准确性。结果表明,与标准BP神经网络模型相比,LM算法优化的BP神经网络模型具有快速收敛、高精度等优点。 展开更多
关键词 低压台区 电气特征参数 线损率 改进K-Means算法 LM算法优化的bp神经网络
下载PDF
基于SOM特征聚类及RBF神经网络的电力负荷预测方法研究 被引量:1
13
作者 郝文斌 孟志高 +3 位作者 张勇 谢波 彭攀 卫佳奇 《电力需求侧管理》 2024年第2期49-54,共6页
为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相... 为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相似特征的数据作为神经网络的训练样本,提高了样本规律性。采用粒子群算法(particle swarm optimization,PSO)修正神经网络粒子群速度及位置,以克服梯度下降、局部最优等问题对网络预测精度的影响。基于某地配电网电力负荷数据,验证了所提模型的有效性及良好的适应性。 展开更多
关键词 负荷预测 自组织映射 径向基函数神经网络 粒子群优化算法
下载PDF
协同神经网络聚类型学习算法 被引量:20
14
作者 董火明 高隽 +1 位作者 陈定国 陈迎春 《合肥工业大学学报(自然科学版)》 CAS CSCD 2002年第4期492-495,共4页
协同神经网络是一类全新的神经网络 ,它可以根据竞争神经网络的一般原则划分为匹配子网和竞争子网。其中 ,匹配子网的学习是协同神经网络的一个中心问题。改善匹配子网的学习效率有 2种途径 :对伴随向量求解算法的改进和原型向量选取方... 协同神经网络是一类全新的神经网络 ,它可以根据竞争神经网络的一般原则划分为匹配子网和竞争子网。其中 ,匹配子网的学习是协同神经网络的一个中心问题。改善匹配子网的学习效率有 2种途径 :对伴随向量求解算法的改进和原型向量选取方法的改进。文章浅析了这 2种类型的学习算法 ,着重研究了聚类算法在原型向量选取中的应用 ,并以一组交通标志图像作为识别样本 ,验证了选取原型向量 2种思路的有效性。 展开更多
关键词 协同神经网络 学习算法 模式识别 匹配子网 学习效率 算法
下载PDF
基于蚁群聚类算法的RBF神经网络在压力传感器中的应用 被引量:13
15
作者 孙艳梅 都文和 +5 位作者 冯昌浩 刘道森 卢俊国 崔全领 苗凤娟 宋志章 《传感技术学报》 CAS CSCD 北大核心 2013年第6期806-809,共4页
针对压力传感器在应用中存在温度漂移这一缺点,提出了一种基于蚁群聚类算法的RBF(Radial Basis Function)神经网络温度补偿方法。利用蚁群算法的并行寻优特征和一种自适应调整挥发系数的方法作为聚类算法来确定RBF神经网络的基函数的位... 针对压力传感器在应用中存在温度漂移这一缺点,提出了一种基于蚁群聚类算法的RBF(Radial Basis Function)神经网络温度补偿方法。利用蚁群算法的并行寻优特征和一种自适应调整挥发系数的方法作为聚类算法来确定RBF神经网络的基函数的位置,并通过裁减的方法约简隐层的神经元达到简化网络结构的目的。通过仿真可以看出,该算法具有误差小,精度高等优点,对压力传感器的温度漂移有较好的补偿效果。 展开更多
关键词 RBF神经网络 蚁群算法 压力传感器
下载PDF
改进的神经网络最近邻聚类学习算法及其应用 被引量:25
16
作者 孙延风 梁艳春 孟庆福 《吉林大学学报(信息科学版)》 CAS 2002年第1期63-66,共4页
提出了一种改进的 RBF (Radial Basis Functions,径向基函数 )神经网络最近邻聚类学习算法 ,并将其应用于股市预测问题。模拟结果表明 ,改进算法的拟合效果与拟合误差均明显好于常规最近邻聚类学习算法 ,可以较大幅度提高 RBF神经网络... 提出了一种改进的 RBF (Radial Basis Functions,径向基函数 )神经网络最近邻聚类学习算法 ,并将其应用于股市预测问题。模拟结果表明 ,改进算法的拟合效果与拟合误差均明显好于常规最近邻聚类学习算法 ,可以较大幅度提高 RBF神经网络的预测性能。 展开更多
关键词 神经网络 预测 径向基函数 最近邻算法
下载PDF
基于模糊聚类和BP神经网络的流域洪水分类预报研究 被引量:14
17
作者 任明磊 王本德 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第1期121-127,共7页
传统的流域洪水预报大都通过率定一组水文模型参数来寻求一个流域径流形成的一般性或平均化规律,其预报精度需要进一步提高.用模糊聚类ISODATA迭代模型将历史洪水分为若干类型,进行水文预报模型参数的分类调试;并建立BP神经网络分类模... 传统的流域洪水预报大都通过率定一组水文模型参数来寻求一个流域径流形成的一般性或平均化规律,其预报精度需要进一步提高.用模糊聚类ISODATA迭代模型将历史洪水分为若干类型,进行水文预报模型参数的分类调试;并建立BP神经网络分类模型判断实时洪水所属类别,选择其相应类别的模型参数实现流域洪水的分类预报.在辽宁省大伙房水库流域的实际应用表明:此方法不但可以实现洪水实时在线分类而且提高了流域整体洪水预报精度,是一种为水库实时调度提供可靠依据的有效洪水预报方法. 展开更多
关键词 洪水预报 bp神经网络 模糊
下载PDF
基于K-均值聚类算法RBF神经网络交通流预测 被引量:21
18
作者 管硕 高军伟 +2 位作者 张彬 刘新 冷子文 《青岛大学学报(工程技术版)》 CAS 2014年第2期20-23,共4页
针对目前道路拥堵等交通问题,本文采用K-均值聚类算法对径向基函数(radial basis function,RBF)网络进行优化,通过K-均值聚类算法把所有的输入样本进行统一聚类,求得所有隐含层节点的RBF中心值Ci,并用最小二乘法(LMS)进行RBF网络的权值... 针对目前道路拥堵等交通问题,本文采用K-均值聚类算法对径向基函数(radial basis function,RBF)网络进行优化,通过K-均值聚类算法把所有的输入样本进行统一聚类,求得所有隐含层节点的RBF中心值Ci,并用最小二乘法(LMS)进行RBF网络的权值调整,同时在一定的时间和路段内对车流量进行数据采集,通过建立RBF神经网络模型,运用Matlab软件把采集的数据、图像进行计算机仿真,仿真结果表明,未加入K-均值聚类的RBF神经网络,其预测输出曲线大致可以和实际输出曲线拟合,但在数据波动较大的时刻,预测曲线的收敛速度偏慢且效率偏低;而采用K-均值聚类算法的RBF神经网络,在实际输出波动较大时,预测输出的曲线收敛速度和准确度都较高,因此,本研究相对于普通的BP神经网络,有更高的预测精度和较好的收敛性。该研究适用于市区内的交通流预测。 展开更多
关键词 RBF神经网络 交通流 预测模型 K-均值算法
下载PDF
基于BP神经网络的文档聚类研究 被引量:7
19
作者 田萱 刘希玉 孟强 《计算机科学》 CSCD 北大核心 2002年第8期93-95,共3页
1,引言 近年来,随着互联网的迅速发展,基于Web的数据挖掘技术受到越来越多的关注,经常用在文本挖掘和信息检索等多个领域的聚类(Clustering)技术也成为人们研究的热点.对一组实际或抽象的元素进行处理,把相似的元素归为同类的过程称之... 1,引言 近年来,随着互联网的迅速发展,基于Web的数据挖掘技术受到越来越多的关注,经常用在文本挖掘和信息检索等多个领域的聚类(Clustering)技术也成为人们研究的热点.对一组实际或抽象的元素进行处理,把相似的元素归为同类的过程称之为聚类[1].对文本信息,如科技文献、Web文档等的聚类,称之为文档聚类(Document Clustering).最初,文档聚类常用于提高信息检索系统的查准率和查全率(recall),或用来寻找与一篇文档最为相似的文档[2].现在,人们利用文档聚类来获得一组满足用户要求的文档集合并按用户需求对其进行排序.另外在Internet上,文本聚类也可用来自动产生文档的层次聚类,从而实现对Web文档的分类. 展开更多
关键词 Internet bp神经网络 文档 数据挖掘 信息检索系统 查准率 查全率
下载PDF
基于聚类法的协同神经网络学习算法 被引量:14
20
作者 王海龙 戚飞虎 《上海交通大学学报》 EI CAS CSCD 北大核心 1998年第10期39-41,共3页
根据协同学理论的基本观点(模式识别的过程即为模式形成的过程),对构造出的协同神经网络在模式识别中的应用进行了研究.发现伴随向量的性能直接影响到模式识别的成功率,而伴随向量是由原型向量计算得到.所以原型向量的选择对识别... 根据协同学理论的基本观点(模式识别的过程即为模式形成的过程),对构造出的协同神经网络在模式识别中的应用进行了研究.发现伴随向量的性能直接影响到模式识别的成功率,而伴随向量是由原型向量计算得到.所以原型向量的选择对识别结果有着十分重要的作用.提出了一种基于聚类算法的选择原型向量的方法.通过对近千个样本进行的模拟实验,结果证明这种基于聚类算法的原型向量选择方法很有效,使识别率有了较大的提高. 展开更多
关键词 协同神经网络 协同学习算法 算法
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部