针对康复训练过程中患者肌肉痉挛会对力反馈遥操作系统稳定性和从机械手速度平滑性产生较大影响的问题,提出了一种新的基于反向传播(BP)神经网络辨识的变增益控制方法。该方法通过 BP 神经网络实时辨识患肢动力学参数的变化并进行自适...针对康复训练过程中患者肌肉痉挛会对力反馈遥操作系统稳定性和从机械手速度平滑性产生较大影响的问题,提出了一种新的基于反向传播(BP)神经网络辨识的变增益控制方法。该方法通过 BP 神经网络实时辨识患肢动力学参数的变化并进行自适应调整控制增益,不仅消除了因患者肌肉痉挛带来的不稳定性,而且减少了其对系统运动平滑性的影响,可提高康复训练效果和起到抑制患者痉挛状态的作用。分析和仿真试验结果表明,该控制方法与传统的控制方法相比,可有效地抑制患者因肌肉痉挛带来的干扰并具有较好的稳定性和平滑性。展开更多
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located...Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.展开更多
文摘针对康复训练过程中患者肌肉痉挛会对力反馈遥操作系统稳定性和从机械手速度平滑性产生较大影响的问题,提出了一种新的基于反向传播(BP)神经网络辨识的变增益控制方法。该方法通过 BP 神经网络实时辨识患肢动力学参数的变化并进行自适应调整控制增益,不仅消除了因患者肌肉痉挛带来的不稳定性,而且减少了其对系统运动平滑性的影响,可提高康复训练效果和起到抑制患者痉挛状态的作用。分析和仿真试验结果表明,该控制方法与传统的控制方法相比,可有效地抑制患者因肌肉痉挛带来的干扰并具有较好的稳定性和平滑性。
基金supported by the "Light of West China" Program of Chinese Academy of Sciences (Grant No.Y6R2250250)the National Basic Research Program of China (973 Program, Grant No.2013CB733201)+2 种基金the One-Hundred Talents Program of Chinese Academy of Sciences (LijunSu)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No.QYZDB-SSW-DQC010)the Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.