针对传统BP神经网络在线估算锂离子电池健康状态(state of health,SOH)容易使权值陷入局部最优解,导致SOH预测不精确。结合模拟退火(simulate anneal,SA)算法能有效收敛于全局最优的特点,提出一种基于SA算法优化BP神经网络的锂离子电池...针对传统BP神经网络在线估算锂离子电池健康状态(state of health,SOH)容易使权值陷入局部最优解,导致SOH预测不精确。结合模拟退火(simulate anneal,SA)算法能有效收敛于全局最优的特点,提出一种基于SA算法优化BP神经网络的锂离子电池SOH在线预测方法。以锂离子电池为研究对象,分析了微分电压、欧姆内阻、循环次数与电池SOH的关系,并以此作为电池的健康状态因子(health indicator,HI)输入至BP神经网络。利用SA算法优化BP神经网络的权值,使预测模型得到最优解。实验结果表明:利用优化算法对电池SOH进行预测,其最大误差仅为1.98%,平均误差为1.09%。相较于传统BP神经网络,优化算法预测最大误差降低了5.62%,平均误差降低2.33%。从而验证了基于SA算法优化BP神经网络能够获取全局最优值并提高电池SOH估算精度是有效的。展开更多
文摘针对传统BP神经网络在线估算锂离子电池健康状态(state of health,SOH)容易使权值陷入局部最优解,导致SOH预测不精确。结合模拟退火(simulate anneal,SA)算法能有效收敛于全局最优的特点,提出一种基于SA算法优化BP神经网络的锂离子电池SOH在线预测方法。以锂离子电池为研究对象,分析了微分电压、欧姆内阻、循环次数与电池SOH的关系,并以此作为电池的健康状态因子(health indicator,HI)输入至BP神经网络。利用SA算法优化BP神经网络的权值,使预测模型得到最优解。实验结果表明:利用优化算法对电池SOH进行预测,其最大误差仅为1.98%,平均误差为1.09%。相较于传统BP神经网络,优化算法预测最大误差降低了5.62%,平均误差降低2.33%。从而验证了基于SA算法优化BP神经网络能够获取全局最优值并提高电池SOH估算精度是有效的。