Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( met...Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( meteorological factors and sowing days) and ET3 (meteorological factors, sowing days and water content). And the predicted result was compared with actual value ET that was obtained by weighing method. The results showed that the ET3 model had higher calculation precision and an optimum BP-artificial neural network model for calculating crop evapotranspiration.展开更多
In this research, a near infrared multi-wavelength noninvasive blood glucose monitoring system with distributed laser multi-sensors is applied to monitor human blood glucose concentration. In order to improve the moni...In this research, a near infrared multi-wavelength noninvasive blood glucose monitoring system with distributed laser multi-sensors is applied to monitor human blood glucose concentration. In order to improve the monitoring accuracy, a multi-sensors information fusion model based on Back Propagation Artificial Neural Network is proposed. The Root- Mean-Square Error of Prediction for noninvasive blood glucose measurement is 0.088mmol/L, and the correlation coefficient is 0.94. The noninvasive blood glucose monitoring system based on distributed multi-sensors information fusion of multi-wavelength NIR is proved to be of great efficient. And the new proposed idea of measurement based on distri- buted multi-sensors, shows better prediction accuracy.展开更多
基金Supported by the National Natural Science Foundation of China(50609022)~~
文摘Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( meteorological factors and sowing days) and ET3 (meteorological factors, sowing days and water content). And the predicted result was compared with actual value ET that was obtained by weighing method. The results showed that the ET3 model had higher calculation precision and an optimum BP-artificial neural network model for calculating crop evapotranspiration.
文摘In this research, a near infrared multi-wavelength noninvasive blood glucose monitoring system with distributed laser multi-sensors is applied to monitor human blood glucose concentration. In order to improve the monitoring accuracy, a multi-sensors information fusion model based on Back Propagation Artificial Neural Network is proposed. The Root- Mean-Square Error of Prediction for noninvasive blood glucose measurement is 0.088mmol/L, and the correlation coefficient is 0.94. The noninvasive blood glucose monitoring system based on distributed multi-sensors information fusion of multi-wavelength NIR is proved to be of great efficient. And the new proposed idea of measurement based on distri- buted multi-sensors, shows better prediction accuracy.