期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors
1
作者 Hunmin Lee Inseop Na +1 位作者 Kamoliddin Bultakov Youngchul Kim 《Computers, Materials & Continua》 SCIE EI 2022年第6期5413-5425,共13页
In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction... In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF(Electric Field)sensors.Currently,an EF sensor or EPS(Electric Potential Sensor)system is attracting attention as a next-generationmotion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing;thus,it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate. 展开更多
关键词 bpr-cnn dynamic offset-threshold method electric potential sensor electric field sensor multiple convolution neural network motion classification
下载PDF
基于特征嵌入的去流行度偏差混合推荐算法
2
作者 李鹏 朱心如 苏忻洁 《计算机应用研究》 CSCD 北大核心 2022年第11期3275-3280,共6页
针对数据不均衡条件下贝叶斯个性化排序算法生成的推荐列表中存在强流行度偏差的问题,提出基于特征嵌入的去流行度偏差混合推荐算法。首先,利用卷积神经网络提取用户、物品特征确定用户偏好,并依据用户偏好对原始不均衡数据进行评分填充... 针对数据不均衡条件下贝叶斯个性化排序算法生成的推荐列表中存在强流行度偏差的问题,提出基于特征嵌入的去流行度偏差混合推荐算法。首先,利用卷积神经网络提取用户、物品特征确定用户偏好,并依据用户偏好对原始不均衡数据进行评分填充;其次,将卷积神经网络提取的用户偏好特征嵌入到贝叶斯个性化排序算法中进行混合推荐;最后,用评分填充数据训练混合推荐模型,得到去流行度偏差的个性化排序列表。为了验证算法的性能,在公开数据集MovieLens-100K和MovieLens-1M上进行分析与对比实验,实验结果显示流行度偏差降低了约50%~60%,精确度提高了约一倍。 展开更多
关键词 贝叶斯个性化排序算法 推荐系统 卷积神经网络 流行度偏差
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部