期刊文献+
共找到828篇文章
< 1 2 42 >
每页显示 20 50 100
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术
1
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子群-反向传播神经网络算法 织物质量预测
下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺
2
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
下载PDF
基于反向传播算法的网络安全态势感知仿真
3
作者 张婷婷 王智强 《计算机仿真》 2024年第3期436-440,共5页
随着互联网技术的广泛应用,网络信息传输的数量日益提升,网络安全态势感知的需求也逐渐增加。针对当前网络安全态势感知算法检测准确率率低,误差较大等问题,提出了基于反向传播算法的网络安全态势感知模型。首先采用大数据分析方法对入... 随着互联网技术的广泛应用,网络信息传输的数量日益提升,网络安全态势感知的需求也逐渐增加。针对当前网络安全态势感知算法检测准确率率低,误差较大等问题,提出了基于反向传播算法的网络安全态势感知模型。首先采用大数据分析方法对入侵信息的特征按节点分解并进行分段分析;其次通过切换检测信道和空间节点的分布式融合方法对关键节点进行分析,提取入侵数据的特征;然后通过反向传播算法对基本的感知原理进行优化,以减小模型检测过程中的误差;最后基于信息融合的结果进行优化,通过模糊识别的方法对入侵行为进行检测,达到安全态势感知的效果。实验结果表明,相比其它算法,所提模型将平均绝对误差缩小近5%,预测精确度提升至少7%,有最佳的实验效果,推动了网络安全态势感知技术的发展和应用。 展开更多
关键词 网络安全态势感知 反向传播算法 入侵检测 无线传感节点
下载PDF
基于反向传播-自适应提升算法的谐波阻抗估计
4
作者 夏焰坤 任俊杰 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期118-125,共8页
目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、... 目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、电流测量数据,使用二元线性回归法估算系统谐波阻抗,并用小波包变换对测量数据进行分段,以找出系统谐波阻抗变动的时间;其次,采用反向传播-自适应提升算法精确量化每个采样数据段的系统谐波阻抗;最后,通过仿真与实例分析验证本文方法相较于其他方法具有更好的鲁棒性和精确性。 展开更多
关键词 系统侧谐波阻抗 小波包变换法 反向传播-自适应提升算法 鲁棒性
下载PDF
基于反向传播算法的耗材采购信息自动管理系统设计
5
作者 梁道军 《自动化技术与应用》 2024年第5期89-92,97,共5页
为促进对应行业的运作与发展,设计一种基于反向传播算法的耗材采购信息自动管理系统。基于设计反向传播算法,确定训练次数,提升耗材采购信息的分类精准度。系统软件由耗材采购信息处理模块、耗材采购信息分类模块与数据库设计模块组成... 为促进对应行业的运作与发展,设计一种基于反向传播算法的耗材采购信息自动管理系统。基于设计反向传播算法,确定训练次数,提升耗材采购信息的分类精准度。系统软件由耗材采购信息处理模块、耗材采购信息分类模块与数据库设计模块组成。实验结果表明,相较于对比系统,系统信息分类精准度自动化管理水平更高。 展开更多
关键词 反向传播算法 耗材 采购信息管理 数据库
下载PDF
基于帝国竞争反向传播神经网络的断块油田开发顺序优化
6
作者 徐庆岩 孙晓飞 +3 位作者 翟光华 王瑞峰 雷诚 张瑾琳 《石油地质与工程》 CAS 2024年第3期77-81,89,共6页
明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合... 明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合模糊评判法等,这些方法在选择评价指标和指标权重上带有较强的主观性,无法做到完全客观的评价。因此本文提出一种基于帝国竞争算法改进的反向传播神经网络模型,首先采用Spearman相关系数法确定影响断块油田开发的主控因素,其次使用分段三次Hermite插值方法实现断块油田群开发数据库的扩充,最后在扩充后的大量数据库训练样本的基础上,基于帝国竞争算法改进的反向传播神经网络模型可以确定影响开发效果参数的权重并预测断块油田群中各断块油田的净现值,根据净现值大小可以确定每个断块的开发顺序。该方法以实际断块油田群的地质油藏数据库作为评价依据,断块油田的开发顺序更加的科学合理,项目整体的净现值也明显高于依靠传统方法确定的开发顺序组合,避免了人为主观性,也节省了数值模拟和经济评价的工作量,克服了现有方法的局限性,对于提高断块油田群开发综合效益具有重要意义。 展开更多
关键词 帝国竞争算法 反向传播神经网络 开发参数权重 投产顺序优化 断块油田群 净现值
下载PDF
基于蚁群算法优化反向传播神经网络的软件质量预测 被引量:3
7
作者 朱嘉豪 郑巍 +2 位作者 杨丰玉 樊鑫 肖鹏 《计算机应用》 CSCD 北大核心 2023年第11期3568-3573,共6页
针对基于反向传播神经网络(BPNN)的软件质量预测模型存在收敛慢、模型精度不高的问题,提出一种基于蚁群算法优化BPNN的软件质量预测(SQP-ACO-BPNN)方法。首先,选择软件质量评价指标,确立软件质量评价体系;其次,采用BPNN构建初始软件质... 针对基于反向传播神经网络(BPNN)的软件质量预测模型存在收敛慢、模型精度不高的问题,提出一种基于蚁群算法优化BPNN的软件质量预测(SQP-ACO-BPNN)方法。首先,选择软件质量评价指标,确立软件质量评价体系;其次,采用BPNN构建初始软件质量预测模型,并利用蚁群优化(ACO)算法确定若干网络结构、网络初始连接权值和阈值;再次,给出网络结构评价函数,选择神经网络模型的最佳结构、网络初始连接权值和阈值;最后,通过BP算法训练该网络,得到最终的软件质量预测模型。在机载嵌入式软件质量预测数据上的实验结果表明,优化后的BPNN模型有效提高了预测的准确率、精确率、召回率和F1值,并且模型能够更快收敛,验证了SQP-ACO-BPNN方法的有效性。 展开更多
关键词 软件质量预测 蚁群优化算法 反向传播神经网络 网络结构评价
下载PDF
遗传算法结合反向传播神经网络优化牡丹花粉硬糖制备工艺 被引量:1
8
作者 彭腾腾 范彬 +3 位作者 尹盼盼 李海燕 王新娣 石晓峰 《中国食品添加剂》 CAS 北大核心 2023年第6期235-244,共10页
目的:利用反向传播神经网络(back propagation neural network,BP-NN)结合遗传算法(genetic algorithm,GA)优化牡丹花粉硬糖制备工艺,为牡丹花粉硬糖品质的改善提供最优的工艺参数。方法:以综合评分为指标,通过单因素试验遴选影响硬糖... 目的:利用反向传播神经网络(back propagation neural network,BP-NN)结合遗传算法(genetic algorithm,GA)优化牡丹花粉硬糖制备工艺,为牡丹花粉硬糖品质的改善提供最优的工艺参数。方法:以综合评分为指标,通过单因素试验遴选影响硬糖品质的主要因素,采用正交试验考察糖醇配比、牡丹花粉用量、熬糖温度对牡丹花粉硬糖品质的影响,在此基础上,利用反向传播神经网络建立预测模型,再结合遗传算法寻优得出各因素的最佳复配结果。结果:糖醇配比、牡丹花粉用量和熬糖温度对硬糖品质具有显著性影响(P<0.05)且彼此交互作用明显;反向传播神经网络模型的训练、测试和预测集的相关系数均大于0.95,表明模型准确度高、拟合程度好;经遗传算法寻优,得出牡丹花粉硬糖的最佳制备工艺为糖醇配比4∶5(w/w),牡丹花粉用量0.94%,柠檬酸用量0.6%,熬糖温度175℃,调和温度90℃。结论:反向传播神经网络结合遗传算法优化牡丹花粉硬糖制备工艺合理可行,为牡丹花粉相关产品的制备提供了新思路。 展开更多
关键词 牡丹花粉 硬糖 遗传算法 反向传播神经网络 工艺优化
下载PDF
基于多目标遗传算法和反向传播神经网络的调节阀流道结构优化 被引量:4
9
作者 吕家皓 吴欣 何磊 《机电工程》 CAS 北大核心 2023年第12期1880-1888,共9页
以往的研究中,只针对调节阀迷宫流道结构和内部流场特性进行了分析,但对迷宫流道抗空化性能和流通性能的优化设计较欠缺。为了满足阀门实际工程中的设计需求,迷宫式调节阀需要具有流道抗空化性能和流通性能。为此,提出了一种基于多目标... 以往的研究中,只针对调节阀迷宫流道结构和内部流场特性进行了分析,但对迷宫流道抗空化性能和流通性能的优化设计较欠缺。为了满足阀门实际工程中的设计需求,迷宫式调节阀需要具有流道抗空化性能和流通性能。为此,提出了一种基于多目标遗传算法(MOGA)和反向传播神经网络(BPNN)的方法,对调节阀迷宫流道进行了结构优化,提高了迷宫流道的抗空化性能和流通性能。首先,基于对冲耗能原理和多级降压原理,设计了弧形对冲式迷宫流道,并建立了流体力学仿真计算的数学模型;然后,利用计算流体动力学(CFD)仿真软件,对模型进行了空化仿真,根据仿真的数据构建了BPNN代理模型,通过结合Sobol敏感度分析方法与代理模型,分析了迷宫流道各参数对仿真结果的影响,采用多目标遗传算法,优化了迷宫流道的结构;最后,搭建了实验测试平台,测量了迷宫流道的阻塞流曲线,对比分析了测试结果与仿真结果。研究结果表明:采用优化算法得到的迷宫流道最大流量由0.0876 kg/s提高到0.1174 kg/s,提高了34%;线性压差由762.163 kPa提高到811.280 kPa,提高了6%;优化的迷宫流道实际最大流量为0.1159 kg/s,提高了33%;线性压差为819 kPa,提高了7%。迷宫流道抗空化性能和流通性能同时得到了提高,证明了仿真的有效性和该方法的可行性。 展开更多
关键词 液压控制阀 迷宫流道 抗空化性能 流通性能 反向传播神经网络 多目标遗传算法 计算流体动力学
下载PDF
遗传算法误差反向传播人工神经网络预测阿立哌唑血药浓度
10
作者 杨泽萍 赵婷 +5 位作者 王婷婷 冯杰 张惠兰 孙力 李红健 于鲁海 《中国药师》 CAS 2023年第10期59-66,共8页
目的构建基于遗传算法误差反向传播(GA-BP)人工神经网络的阿立哌唑(APZ)及其代谢产物脱氢阿立哌唑(DAPZ)血药浓度预测模型,为需要调整APZ使用剂量或不能进行APZ血药浓度监测的患者提供浓度预测模型。方法回顾性收集在2021年7月—2022年... 目的构建基于遗传算法误差反向传播(GA-BP)人工神经网络的阿立哌唑(APZ)及其代谢产物脱氢阿立哌唑(DAPZ)血药浓度预测模型,为需要调整APZ使用剂量或不能进行APZ血药浓度监测的患者提供浓度预测模型。方法回顾性收集在2021年7月—2022年8月新疆维吾尔自治区人民医院就诊且规律服用APZ的174例患者的血药浓度资料,提取相关变量,采用Matlab R2018a编程软件,结合深度学习网络构建GA-BP人工神经网络预测模型,预测APZ+DAPZ血药浓度。结果GA-BP人工神经网络预测模型验证结果显示,35例验证组样本的预测结果与实测结果相比,平均预测误差为-0.0926,平均绝对误差为0.6895,35个预测误差均小于15%,小于15%的概率为100%,血药浓度的预测值与实测值之间的相关系数为0.997,预测结果较理想。结论GA-BP人工神经网络预测模型预测APZ+DAPZ血药浓度,可用于APZ的个体化给药。 展开更多
关键词 遗传算法误差反向传播 人工神经网络 阿立哌唑 脱氢阿立哌唑 血药浓度预测
下载PDF
多特征反向传播-人工神经网络微钻阻力年轮识别方法
11
作者 姚建峰 吴振洋 +4 位作者 胡雪凡 孙艳歌 田文静 路一曼 李晓 《信阳师范学院学报(自然科学版)》 CAS 2024年第4期460-469,共10页
峰谷年轮识别算法仅使用峰谷差值这一个特征进行年轮识别,因此该算法的误判率和漏判率较高。为了进一步提高微钻阻力年轮识别精度,提出了一种基于多个波峰特征的反向传播-人工神经网络(BP-ANN)年轮识别方法。首先使用峰谷年轮算法识别... 峰谷年轮识别算法仅使用峰谷差值这一个特征进行年轮识别,因此该算法的误判率和漏判率较高。为了进一步提高微钻阻力年轮识别精度,提出了一种基于多个波峰特征的反向传播-人工神经网络(BP-ANN)年轮识别方法。首先使用峰谷年轮算法识别有效波峰,然后使用波峰阻力值、波峰与前波谷和后波谷的阻力差值、波峰与前波谷和后波谷的距离、前波谷与后波谷的距离等6个参数描述波峰特征;然后根据阻力图与圆盘图像确定有效波峰的类型,如果该波峰是一个年轮信号,则标记为“1”,否则标记为“0”;最后使用BP-ANN算法构建有效波峰分类模型。结果显示,BP-ANN模型的准确率比峰谷年轮识别算法提高了1.26个百分点,误判率和漏判率比峰谷年轮识别算法分别减少了1.06和1.38个百分点。结果表明:基于多个波峰特征的BP-ANN模型的年轮识别方法可行;与传统的峰谷年轮识别算法相比,该方法可有效提高年轮识别精度,有效降低年轮误判率和漏判率. 展开更多
关键词 反向传播-人工神经网络(BP-ANN) 微钻阻力仪 峰谷年轮识别算法 年轮
下载PDF
基于层次分析法-熵权法结合遗传算法-反向传播神经网络优化金蒲橘泡腾片提取工艺
12
作者 许玲 牛晓静 +5 位作者 吴延娆 岳亚楠 徐立然 段晓颖 沙薇 余萍 《中医研究》 2023年第11期75-81,共7页
目的:采用正交试验及层次分析法(analytic hierarchy process,AHP)-熵权法结合遗传算法(genetic algorithm,GA)-反向传播(back propagation,BP)神经网络优选金蒲橘泡腾片提取工艺。方法:以绿原酸、木犀草苷、菊苣酸提取量和出膏率为指标... 目的:采用正交试验及层次分析法(analytic hierarchy process,AHP)-熵权法结合遗传算法(genetic algorithm,GA)-反向传播(back propagation,BP)神经网络优选金蒲橘泡腾片提取工艺。方法:以绿原酸、木犀草苷、菊苣酸提取量和出膏率为指标,采用AHP-熵权法确定各指标的复合权重系数,根据L9(34)正交实验对加水倍数、提取时间、提取次数进行考察,并结合GA-BP模型进一步优选金蒲橘泡腾片提取工艺。采用高效液相法测定绿原酸、木犀草苷、菊苣酸含量,以Agilent ZORBAX SB-Aq(5μm,4.6 mm×250 mm)为色谱柱,以乙腈-4 mL/L磷酸水溶液为流动相梯度洗脱,柱温25℃,流速为1.0 mL/min,检测波长为350 nm,进样量为10μL。结果:绿原酸、木犀草苷和菊苣酸分别在24.6~787.2 mg/L、0.9~14.4 mg/L和5.4~172.8mg/L范围内线性关系良好,平均加样回收率分别为101.58%、99.60%、105.31%,RSD分别为1.87%、1.99%、1.15%。正交试验筛选出最优提取工艺为加12倍水,提取2次,每次0.5 h,综合评分为95.59分;GA-BP模型优选的最优提取工艺为加12倍水,提取2次,每次1 h,综合评分为96.86分。工艺验证表明,正交试验所得最优工艺RSD为3.15%,GA-BP模型所得最优工艺的RSD为2.75%,与预测值相对误差仅有0.14%。结论:GA-BP模型结合AHP-熵权法优选的金蒲橘泡腾片提取工艺稳定,有较好的预测性,可为其制剂工艺研究提供新的思路。 展开更多
关键词 金蒲橘泡腾片 提取工艺 绿原酸 木犀草苷 菊苣酸 层次分析法-熵权法 遗传算法-反向传播神经网络 正交试验
下载PDF
基于粒子群优化算法优化反向传播神经网络构建冷藏草鱼新鲜度的近红外光谱预测模型 被引量:1
13
作者 张沁宇 胡志刚 +4 位作者 徐子健 王子豪 蒋亚军 付丹丹 陈艳 《食品安全质量检测学报》 CAS 北大核心 2023年第22期200-209,共10页
目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用... 目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用x-y距离结合的样本划分(samplesetpartitioningbasedonjointx-y distance,SPXY)方法进行数据集的划分,并采用正交信号校正法(orthogonalsignalcorrection,OSC)、Savitzky-Golay(SG)、一阶导数及其组合算法进行光谱预处理。再运用竞争性自适应重加权采样(competitive adaptivereweightedsampling,CARS)、连续投影算法(successiveprojectionsalgorithm,SPA)、主成分分析(principal component analysis, PCA)对光谱变量进行选择和降维。最后结合偏最小二乘回归(partial least squares regression,PLSR)、反向传播(backpropagation,BP)神经网络和粒子群优化算法(particleswarmoptimization,PSO)优化BP神经网络(PSO-BP),建立草鱼(Ctenopharyngodonidella)片新鲜度定量预测模型。结果 各线性和非线性模型均得到了良好的预测效果,预测集相关系数均超过了0.95。PLSR表现较为稳定, BP神经网络虽提高了校正集预测性能,但是预测集性能不如PLSR。PSO-BP既保证了校正集预测性能,也提高了预测集性能。基于OSC+D1预处理和CARS变量选择后的PSO-BP模型性能最优(R2P=0.987,预测集的均方根误差为0.108,相对分析误差为7.778)。结论 基于PSO-BP算法和近红外光谱的定量预测模型可以很好地预测冷藏鱼肉的新鲜度指标。 展开更多
关键词 近红外光谱 冷藏 草鱼 新鲜度 总挥发性盐基氮 粒子群优化算法 反向传播神经网络 正交信号校正法
下载PDF
基于反向感染的复合种群网络传播溯源算法
14
作者 阳成 王建波 +1 位作者 许小可 杜占玮 《计算机应用研究》 CSCD 北大核心 2023年第9期2681-2687,2693,共8页
流行病的传播会对整个人类社会构成巨大威胁,因此迅速识别传播源并及时采取控制措施至关重要。然而,由于流行病传播过程具有多样性、信息不确定性等因素,使得快速准确识别传播源成为一项挑战。结合反向感染算法、复合种群网络模型以及... 流行病的传播会对整个人类社会构成巨大威胁,因此迅速识别传播源并及时采取控制措施至关重要。然而,由于流行病传播过程具有多样性、信息不确定性等因素,使得快速准确识别传播源成为一项挑战。结合反向感染算法、复合种群网络模型以及马尔可夫链理论,提出了一个在复合种群网络中识别传播源的新算法。该算法首先利用马尔可夫链来初步估计子种群被感染的时间,被感染子种群根据感染时间获得自己的身份信息,然后遍历所有获得感染子种群身份信息的子种群,将收集到的感染子种群身份信息传播给其所有邻居,最后根据获得所有感染子种群身份信息的时间顺序推断出复合种群网络的传播源。在真实的航空网和人造复合种群网络上进行大量仿真实验,发现无论在已知全部感染快照还是部分感染快照的情况下,该算法与其他传播溯源算法相比,识别传播源的准确性都有显著提升。该算法非常适合用于航空网这类复合种群网络,对现实世界中的流行病传播溯源和控制也具有参考意义。 展开更多
关键词 复合种群网络 传播溯源算法 反向感染 计算机仿真
下载PDF
前馈神经网络中的反向传播算法及其改进:进展与展望 被引量:50
15
作者 刘曙光 郑崇勋 刘明远 《计算机科学》 CSCD 北大核心 1996年第1期76-79,共4页
BP网络和算法是使用最广泛的神经网络模型之一,但由于它使用悌度算法,因而存在固有的局部极小及收敛速度慢等问题。本文首先回顾了BP算法的产生和和发展过程,之后对BP算法固有的特点进行了阐述,最后针对原基本BP算法的缺陷对各种改进方... BP网络和算法是使用最广泛的神经网络模型之一,但由于它使用悌度算法,因而存在固有的局部极小及收敛速度慢等问题。本文首先回顾了BP算法的产生和和发展过程,之后对BP算法固有的特点进行了阐述,最后针对原基本BP算法的缺陷对各种改进方法进行了全面综述,并指出了这一研究中的有关问题。 展开更多
关键词 神经网络 反向传播算法 前馈神经网络
下载PDF
基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型 被引量:16
16
作者 张玲 王玲 吴桐 《计算机应用》 CSCD 北大核心 2014年第3期775-779,共5页
针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传... 针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传统BP算法收敛速度慢及对网络初始值敏感的问题。同时,针对标准PSO算法易出现早熟收敛、局部寻优能力弱等缺点,提出了相应改进策略,进一步提高了PSO优化BP神经网络的能力。实验结果表明:与传统BP模型和标准PSO-BP模型相比,基于改进的PSO-BP算法的热舒适度预测模型具有更高的预测精度和更快的收敛速度。 展开更多
关键词 热舒适度 预测 反向传播神经网络 粒子群优化算法 模型
下载PDF
适用于海量负荷数据分类的高性能反向传播神经网络算法 被引量:37
17
作者 刘洋 刘洋1 许立雄 《电力系统自动化》 EI CSCD 北大核心 2018年第21期96-103,共8页
负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网... 负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网络(BPNN)算法并行化,实现对海量负荷数据的高效分类。然后,通过对训练样本抽样分块以降低各网络学习时间,针对分布式后BPNN基分类器由于学习样本缺失潜在的准确度下降问题,采用集成学习予以改善。并通过BPNN学习不同训练样本块构建差异化基分类器,对基分类结果多数投票得到最终分类结果。另外,提供了一种基于K-means和K-medoids聚类的负荷数据训练样本选取方法。算例表明所提方法既能对负荷曲线有效分类,又能大幅提高海量数据的处理效率。 展开更多
关键词 负荷分类 Spark平台 反向传播神经网络 集成学习 聚类算法
下载PDF
基于多特征融合和分层反向传播增强算法的人体动作识别 被引量:6
18
作者 李拟珺 程旭 +1 位作者 郭海燕 吴镇扬 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期493-498,共6页
为了推广神经网络在人体动作识别中的应用,设计了一种基于分层识别框架和增强算法的动作识别系统,该系统融合了光流直方图、有向梯度直方图、Hu的矩特征、分块剪影和自相似矩阵等多种特征.为了与反向传播网络的增强相匹配,将传统的二分... 为了推广神经网络在人体动作识别中的应用,设计了一种基于分层识别框架和增强算法的动作识别系统,该系统融合了光流直方图、有向梯度直方图、Hu的矩特征、分块剪影和自相似矩阵等多种特征.为了与反向传播网络的增强相匹配,将传统的二分类增强算法扩展到多分类版本.此外,系统采用了包含预判决和后判决的分层识别框架,前者通过分析运动显著区域的位置,把动作粗分为几个子类,后者则利用额外的特征进一步提高识别准确率.基于Weizmann和KTH数据库的实验结果表明:神经网络相对于常用的支持向量机具有明显的优越性;结合分层识别的反向传播增强算法可以极大减少运算代价与动作类间的混淆,识别准确率较高. 展开更多
关键词 特征提取 动作识别 反向传播增强算法 神经网络 分层识别
下载PDF
一种改进的反向传播神经网络算法 被引量:4
19
作者 邱浩 王道波 张焕春 《应用科学学报》 CAS CSCD 2004年第3期384-387,共4页
在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通... 在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通过XOR问题的仿真证明了改进算法的有效性. 展开更多
关键词 反向传播 神经网络 误差 模式 传播 学习算法
下载PDF
基于反向传播算法神经网络的信用评分系统预测力研究 被引量:4
20
作者 朱晓明 程建 +1 位作者 刘治国 钟经樊 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第12期1405-1409,共5页
为了提高信用评分系统的预测准确性和稳定性,建立了基于反向传播(BP)算法神经网络的信用评分系统,并提出信用评分系统预测力和预测稳定性验证的新方法.结合信用评分问题的实际特点建立了模型并确定了参数,然后采用一种正向选入法确定输... 为了提高信用评分系统的预测准确性和稳定性,建立了基于反向传播(BP)算法神经网络的信用评分系统,并提出信用评分系统预测力和预测稳定性验证的新方法.结合信用评分问题的实际特点建立了模型并确定了参数,然后采用一种正向选入法确定输入变量,进行模型训练,并通过引入接收器操作特征曲线的分析理论、曲线面积(AUC)值及信息理论等评价方式,对所构造的神经网络信用评分系统预测力进行评价,最后利用自抽样法构造出多个验证样本来评估信用评分系统的稳定性.与传统的逻辑信用评分系统的比较结果表明,BP神经网络信用评分系统具有更高的预测准确性和稳定性,其AUC值平均提高0.036 7,AUC值的标准误差平均降低0.005. 展开更多
关键词 神经网络 反向传播算法 信用评分 曲线面积值
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部