In this paper we discuss a novel storage scheme for simultaneous memory access in parallel turbo decoder. The new scheme employs vertex coloring in graph theory. Compared to a similar method that also uses unnatural o...In this paper we discuss a novel storage scheme for simultaneous memory access in parallel turbo decoder. The new scheme employs vertex coloring in graph theory. Compared to a similar method that also uses unnatural order in storage, our scheme requires 25 more memory blocks but allows a simpler configuration for variable sizes of code lengths that can be implemented on-chip. Experiment shows that for a moderate to high decoding throughput (40-100 Mbps), the hardware cost is still affordable for 3GPP's (3rd generation partnership project) interleaver.展开更多
Genetic algorithms offer very good performances for solving large optimization problems, especially in the domain of error-correcting codes. However, they have a major drawback related to the time complexity and memor...Genetic algorithms offer very good performances for solving large optimization problems, especially in the domain of error-correcting codes. However, they have a major drawback related to the time complexity and memory occupation when running on a uniprocessor computer. This paper proposes a parallel decoder for linear block codes, using parallel genetic algorithms (PGA). The good performance and time complexity are confirmed by theoretical study and by simulations on BCH(63,30,14) codes over both AWGN and flat Rayleigh fading channels. The simulation results show that the coding gain between parallel and single genetic algorithm is about 0.7 dB at BER = 10﹣5 with only 4 processors.展开更多
Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Seri...Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.展开更多
Considering that the hardware implementation of the normalized minimum sum(NMS)decoding algorithm for low-density parity-check(LDPC)code is difficult due to the uncertainty of scale factor,an NMS decoding algorithm wi...Considering that the hardware implementation of the normalized minimum sum(NMS)decoding algorithm for low-density parity-check(LDPC)code is difficult due to the uncertainty of scale factor,an NMS decoding algorithm with variable scale factor is proposed for the near-earth space LDPC codes(8177,7154)in the consultative committee for space data systems(CCSDS)standard.The shift characteristics of field programmable gate array(FPGA)is used to optimize the quantization data of check nodes,and finally the function of LDPC decoder is realized.The simulation and experimental results show that the designed FPGA-based LDPC decoder adopts the scaling factor in the NMS decoding algorithm to improve the decoding performance,simplify the hardware structure,accelerate the convergence speed and improve the error correction ability.展开更多
本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN...本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN网络的输入特征为噪声信号的复数频谱(包括实部谱和虚部谱).网络结构中,采用编码模块从噪声复数频谱中提取特征,利用双解码模块分别估计网络输出的实部谱和虚部谱,采用参数共享机制和组策略以降低训练参数的数量并提高网络的学习能力和泛化能力.特别是针对风噪声,选用新的损失函数以及对训练数据进行正则化处理以提升DCRN的性能.实验结果表明,DCRN方法在仿真环境与有源降噪耳机环境下对一般噪声和风噪声都表现出良好的降噪性能和鲁棒性.展开更多
In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-of...In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.展开更多
基金supported by the National High-Technology Research and Development Program of China (Grant No.2003AA123310), and the National Natural Science Foundation of China (Grant Nos.60332030, 60572157)
文摘In this paper we discuss a novel storage scheme for simultaneous memory access in parallel turbo decoder. The new scheme employs vertex coloring in graph theory. Compared to a similar method that also uses unnatural order in storage, our scheme requires 25 more memory blocks but allows a simpler configuration for variable sizes of code lengths that can be implemented on-chip. Experiment shows that for a moderate to high decoding throughput (40-100 Mbps), the hardware cost is still affordable for 3GPP's (3rd generation partnership project) interleaver.
文摘Genetic algorithms offer very good performances for solving large optimization problems, especially in the domain of error-correcting codes. However, they have a major drawback related to the time complexity and memory occupation when running on a uniprocessor computer. This paper proposes a parallel decoder for linear block codes, using parallel genetic algorithms (PGA). The good performance and time complexity are confirmed by theoretical study and by simulations on BCH(63,30,14) codes over both AWGN and flat Rayleigh fading channels. The simulation results show that the coding gain between parallel and single genetic algorithm is about 0.7 dB at BER = 10﹣5 with only 4 processors.
文摘Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.
文摘Considering that the hardware implementation of the normalized minimum sum(NMS)decoding algorithm for low-density parity-check(LDPC)code is difficult due to the uncertainty of scale factor,an NMS decoding algorithm with variable scale factor is proposed for the near-earth space LDPC codes(8177,7154)in the consultative committee for space data systems(CCSDS)standard.The shift characteristics of field programmable gate array(FPGA)is used to optimize the quantization data of check nodes,and finally the function of LDPC decoder is realized.The simulation and experimental results show that the designed FPGA-based LDPC decoder adopts the scaling factor in the NMS decoding algorithm to improve the decoding performance,simplify the hardware structure,accelerate the convergence speed and improve the error correction ability.
文摘本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN网络的输入特征为噪声信号的复数频谱(包括实部谱和虚部谱).网络结构中,采用编码模块从噪声复数频谱中提取特征,利用双解码模块分别估计网络输出的实部谱和虚部谱,采用参数共享机制和组策略以降低训练参数的数量并提高网络的学习能力和泛化能力.特别是针对风噪声,选用新的损失函数以及对训练数据进行正则化处理以提升DCRN的性能.实验结果表明,DCRN方法在仿真环境与有源降噪耳机环境下对一般噪声和风噪声都表现出良好的降噪性能和鲁棒性.
文摘In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.