With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is...In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.展开更多
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric...Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss.展开更多
This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic...This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.展开更多
Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key ro...Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies.展开更多
In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the d...In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the distribution network.To effectively improve the lean management of LVSA,the paper proposes an identification method for the UTR based on Local Selective Combination in ParallelOutlier Ensembles algorithm(LSCP).Firstly,the voltage data is reconstructed based on the information entropy to highlight the differences in between.Then,the LSCP algorithmcombines four base outlier detection algorithms,namely Isolation Forest(I-Forest),One-Class Support VectorMachine(OC-SVM),Copula-Based Outlier Detection(COPOD)and Local Outlier Factor(LOF),to construct the identification model of UTR.This model can accurately detect users’differences in voltage data,and identify users with wrong UTR.Meanwhile,the key input parameter of the LSCP algorithm is determined automatically through the line loss rate,and the influence of artificial settings on recognition accuracy can be reduced.Finally,thismethod is verified in the actual LVSA where the recall and precision rates are 100%compared with othermethods.Furthermore,the applicability to the LVSAs with difficult data acquisition and the voltage data error in transmission are analyzed.The proposed method adopts the ensemble learning framework and does not need to set the detection threshold manually.And it is applicable to the LVSAs with difficult data acquisition and high voltage similarity,which improves the stability and accuracy of UTR identification in LVSA.展开更多
This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast a...This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss. GA fitness function is introduced including the active power losses, reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable. GA fitness function is subjected to voltage constraints, active and reactive power losses constraints and DG size constraint.展开更多
针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word ...针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word network, CWNet)。利用并行卷积神经网络分别提取域名中字符和词的特征;将两种特征进行拼接,构造成融合特征;利用Softmax函数实现合法域名与恶意域名的检测。实验结果表明,该算法可以提升对恶意域名的检测能力,对更具挑战性的恶意域名家族的检测准确率提升效果更为明显。展开更多
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.
基金supported by the National Natural Science Foundation of China(52177081).
文摘In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.
基金This study stemmed from a research project(code number:96000838)which was sponsored by the Institute for Futures Studies in Health at Kerman University of Medical Sciences.
文摘Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss.
基金supported by Borujerd Branch,Islamic Azad University Iran
文摘This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.
基金funded by the Russian Foundation for Basic Research(RFBR)(No.20-07-00531).
文摘Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies.
文摘In the power distribution system,the missing or incorrect file of users-transformer relationship(UTR)in lowvoltage station area(LVSA)will affect the leanmanagement of the LVSA,and the operation andmaintenance of the distribution network.To effectively improve the lean management of LVSA,the paper proposes an identification method for the UTR based on Local Selective Combination in ParallelOutlier Ensembles algorithm(LSCP).Firstly,the voltage data is reconstructed based on the information entropy to highlight the differences in between.Then,the LSCP algorithmcombines four base outlier detection algorithms,namely Isolation Forest(I-Forest),One-Class Support VectorMachine(OC-SVM),Copula-Based Outlier Detection(COPOD)and Local Outlier Factor(LOF),to construct the identification model of UTR.This model can accurately detect users’differences in voltage data,and identify users with wrong UTR.Meanwhile,the key input parameter of the LSCP algorithm is determined automatically through the line loss rate,and the influence of artificial settings on recognition accuracy can be reduced.Finally,thismethod is verified in the actual LVSA where the recall and precision rates are 100%compared with othermethods.Furthermore,the applicability to the LVSAs with difficult data acquisition and the voltage data error in transmission are analyzed.The proposed method adopts the ensemble learning framework and does not need to set the detection threshold manually.And it is applicable to the LVSAs with difficult data acquisition and high voltage similarity,which improves the stability and accuracy of UTR identification in LVSA.
文摘This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss. GA fitness function is introduced including the active power losses, reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable. GA fitness function is subjected to voltage constraints, active and reactive power losses constraints and DG size constraint.
文摘针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word network, CWNet)。利用并行卷积神经网络分别提取域名中字符和词的特征;将两种特征进行拼接,构造成融合特征;利用Softmax函数实现合法域名与恶意域名的检测。实验结果表明,该算法可以提升对恶意域名的检测能力,对更具挑战性的恶意域名家族的检测准确率提升效果更为明显。