It's that time of the year again. As millions of his peers anxiously await the results of their university entrance examinations, the successful investment analyst and author of Essentials of Speculation on Stocks an...It's that time of the year again. As millions of his peers anxiously await the results of their university entrance examinations, the successful investment analyst and author of Essentials of Speculation on Stocks and Futures is busy working out a kink in his 5-million-yuan portfolio.展开更多
Brain tumors are considered as most fatal cancers.To reduce the risk of death,early identification of the disease is required.One of the best available methods to evaluate brain tumors is Magnetic resonance Images(MRI...Brain tumors are considered as most fatal cancers.To reduce the risk of death,early identification of the disease is required.One of the best available methods to evaluate brain tumors is Magnetic resonance Images(MRI).Brain tumor detection and segmentation are tough as brain tumors may vary in size,shape,and location.That makes manual detection of brain tumors by exploring MRI a tedious job for radiologists and doctors’.So an automated brain tumor detection and segmentation is required.This work suggests a Region-based Convolution Neural Network(RCNN)approach for automated brain tumor identification and segmentation using MR images,which helps solve the difficulties of brain tumor identification efficiently and accurately.Our methodology is based on the accurate and efficient selection of tumorous areas.That reduces computational complexity and time.We have validated the designed experimental setup on a standard dataset,BraTS 2020.We used binary evaluation matrices based on Dice Similarity Coefficient(DSC)and Mean Average Precision(mAP).The segmentation results are compared with state-of-the-art methodologies to demonstrate the effectiveness of the proposed method.The suggested approach attained an averageDSC of 0.92 andmAP 0.92 for 10 patients,while on the whole dataset,the scores are DSC 0.89 and mAP 0.90.The following results clearly show the performance efficiency of the proposed methodology.展开更多
Brain tumor is one of the most dreadful worldwide types of cancer and affects people leading to death.Magnetic resonance imaging methods capture skull images that contain healthy and affected tissue.Radiologists check...Brain tumor is one of the most dreadful worldwide types of cancer and affects people leading to death.Magnetic resonance imaging methods capture skull images that contain healthy and affected tissue.Radiologists checked the affected tissue in the slice-by-slice manner,which was timeconsuming and hectic task.Therefore,auto segmentation of the affected part is needed to facilitate radiologists.Therefore,we have considered a hybrid model that inherits the convolutional neural network(CNN)properties to the support vector machine(SVM)for the auto-segmented brain tumor region.The CNN model is initially used to detect brain tumors,while SVM is integrated to segment the tumor region correctly.The proposed method was evaluated on a publicly available BraTS2020 dataset.The statistical parameters used in this work for the mathematical measures are precision,accuracy,specificity,sensitivity,and dice coefficient.Overall,our method achieved an accuracy value of 0.98,which is most prominent than existing techniques.Moreover,the proposed approach is more suitable for medical experts to diagnose the early stages of the brain tumor.展开更多
文摘It's that time of the year again. As millions of his peers anxiously await the results of their university entrance examinations, the successful investment analyst and author of Essentials of Speculation on Stocks and Futures is busy working out a kink in his 5-million-yuan portfolio.
基金This work was funded by the Ministry of Education under Grant NRF-2019R1A2C1006159Grant NRF-2021R1A6A1A03039493。
文摘Brain tumors are considered as most fatal cancers.To reduce the risk of death,early identification of the disease is required.One of the best available methods to evaluate brain tumors is Magnetic resonance Images(MRI).Brain tumor detection and segmentation are tough as brain tumors may vary in size,shape,and location.That makes manual detection of brain tumors by exploring MRI a tedious job for radiologists and doctors’.So an automated brain tumor detection and segmentation is required.This work suggests a Region-based Convolution Neural Network(RCNN)approach for automated brain tumor identification and segmentation using MR images,which helps solve the difficulties of brain tumor identification efficiently and accurately.Our methodology is based on the accurate and efficient selection of tumorous areas.That reduces computational complexity and time.We have validated the designed experimental setup on a standard dataset,BraTS 2020.We used binary evaluation matrices based on Dice Similarity Coefficient(DSC)and Mean Average Precision(mAP).The segmentation results are compared with state-of-the-art methodologies to demonstrate the effectiveness of the proposed method.The suggested approach attained an averageDSC of 0.92 andmAP 0.92 for 10 patients,while on the whole dataset,the scores are DSC 0.89 and mAP 0.90.The following results clearly show the performance efficiency of the proposed methodology.
基金Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for funding this research through a Project(NU/IFC/ENT/01/014)under the institutional funding committee at Najran University,Kingdom of Saudi Arabia.
文摘Brain tumor is one of the most dreadful worldwide types of cancer and affects people leading to death.Magnetic resonance imaging methods capture skull images that contain healthy and affected tissue.Radiologists checked the affected tissue in the slice-by-slice manner,which was timeconsuming and hectic task.Therefore,auto segmentation of the affected part is needed to facilitate radiologists.Therefore,we have considered a hybrid model that inherits the convolutional neural network(CNN)properties to the support vector machine(SVM)for the auto-segmented brain tumor region.The CNN model is initially used to detect brain tumors,while SVM is integrated to segment the tumor region correctly.The proposed method was evaluated on a publicly available BraTS2020 dataset.The statistical parameters used in this work for the mathematical measures are precision,accuracy,specificity,sensitivity,and dice coefficient.Overall,our method achieved an accuracy value of 0.98,which is most prominent than existing techniques.Moreover,the proposed approach is more suitable for medical experts to diagnose the early stages of the brain tumor.