Bromodomain and plant homeodomain(PHD)finger containing protein 1(Brpf1)is an activator and scaffold protein of a multiunit complex that includes other components involving lysine acetyltransferase(KAT)6A/6B/7.Brpf1,K...Bromodomain and plant homeodomain(PHD)finger containing protein 1(Brpf1)is an activator and scaffold protein of a multiunit complex that includes other components involving lysine acetyltransferase(KAT)6A/6B/7.Brpf1,KAT6A,and KAT6B mutations were identified as the causal genes of neurodevelopmental disorders leading to intellectual disability.Our previous work revealed strong and specific expression of Brpf1 in both the postnatal and adult forebrain,especially the hippocampus,which has essential roles in learning and memory.Here,we hypothesized that Brpf1 plays critical roles in the function of forebrain excitatory neurons,and that its deficiency leads to learning and memory deficits.To test this,we knocked out Brpf1 in forebrain excitatory neurons using CaMKIIa-Cre.We found that Brpf1 deficiency reduced the frequency of miniature excitatory postsynaptic currents and downregulated the expression of genes Pcdhgb1,Slc16a7,Robo3,and Rho,which are related to neural development,synapse function,and memory,thereby damaging spatial and fear memory in mice.These findings help explain the mechanisms of intellectual impairment in patients with BRPF1 mutation.展开更多
RHOX5基因是最早发现的小鼠RHOX基因簇(reproductive homeobox on the X chromosome)成员,可特异性地在生殖系统中表达。RHOX5蛋白在胚胎发育、生殖组织的发育、精子的生成和成熟等多个环节发挥作用,但其功能的发挥途径尚不明确。在前...RHOX5基因是最早发现的小鼠RHOX基因簇(reproductive homeobox on the X chromosome)成员,可特异性地在生殖系统中表达。RHOX5蛋白在胚胎发育、生殖组织的发育、精子的生成和成熟等多个环节发挥作用,但其功能的发挥途径尚不明确。在前期筛选与RHOX5蛋白相互作用的分子中初步获得一个BRPF1的新型转录本BRPF2。进一步构建pGBKT7-BRPF2质粒,酵母双杂交实验确定其与RHOX5蛋白的相互作用,GST-pull down实验确定其在体外的直接结合;PCR扩增BRPF1基因,构建pGBKT7-BRPF1和pGADT7-BRPF1质粒,酵母双杂交实验和GST-pulldown实验证明RHOX5蛋白亦可以直接结合BRPF1蛋白。BRPF1及其新型转录本BRPF2与RHOX5蛋白间的相互作用证实暗示了BRPF2极有可能与BRPF1竞争性结合RHOX5蛋白,为三种蛋白功能的研究提供了新的思路。展开更多
Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription.Although the functions of bromodomain-containing proteins in development,homeostasis,and dis...Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription.Although the functions of bromodomain-containing proteins in development,homeostasis,and disease states have been well studied,their role in self-renewal of hematopoietic stem and progenitor cells(HSPCs)remains poorly understood.Here,we performed a chemical screen using nine bromodomain inhibitors and found that the bromodomain and PHD finger-containing protein 1(Brpf1)inhibitor OF-1 enhanced the expansion of Lin−Sca-1+c-Kit+HSPCs ex vivo without skewing their lineage differentiation potential.Importantly,our results also revealed distinct functions of Brpf1 isoforms in HSPCs.Brpf1b promoted the expansion of HSPCs.By contrast,Brpf1a is the most abundant isoform in adult HSPCs but enhanced HSPC quiescence and decreased the HSPC expansion.Furthermore,inhibition of Brpf1a by OF-1 promoted histone acetylation and chromatin accessibility leading to increased expression of self-renewal-related genes(e.g.Mn1).The phenotypes produced by OF-1 treatment can be rescued by suppression of Mn1 in HSPCs.Our findings demonstrate that this novel bromodomain inhibitor OF-1 can promote the clinical application of HSPCs in transplantation.展开更多
基金supported by the National Natural Science Foundation of China,No. 81771228Shanghai Association of Science and Technology,Nos. 22WZ2501700 and 23WZ2504500 (all to LY)
文摘Bromodomain and plant homeodomain(PHD)finger containing protein 1(Brpf1)is an activator and scaffold protein of a multiunit complex that includes other components involving lysine acetyltransferase(KAT)6A/6B/7.Brpf1,KAT6A,and KAT6B mutations were identified as the causal genes of neurodevelopmental disorders leading to intellectual disability.Our previous work revealed strong and specific expression of Brpf1 in both the postnatal and adult forebrain,especially the hippocampus,which has essential roles in learning and memory.Here,we hypothesized that Brpf1 plays critical roles in the function of forebrain excitatory neurons,and that its deficiency leads to learning and memory deficits.To test this,we knocked out Brpf1 in forebrain excitatory neurons using CaMKIIa-Cre.We found that Brpf1 deficiency reduced the frequency of miniature excitatory postsynaptic currents and downregulated the expression of genes Pcdhgb1,Slc16a7,Robo3,and Rho,which are related to neural development,synapse function,and memory,thereby damaging spatial and fear memory in mice.These findings help explain the mechanisms of intellectual impairment in patients with BRPF1 mutation.
文摘RHOX5基因是最早发现的小鼠RHOX基因簇(reproductive homeobox on the X chromosome)成员,可特异性地在生殖系统中表达。RHOX5蛋白在胚胎发育、生殖组织的发育、精子的生成和成熟等多个环节发挥作用,但其功能的发挥途径尚不明确。在前期筛选与RHOX5蛋白相互作用的分子中初步获得一个BRPF1的新型转录本BRPF2。进一步构建pGBKT7-BRPF2质粒,酵母双杂交实验确定其与RHOX5蛋白的相互作用,GST-pull down实验确定其在体外的直接结合;PCR扩增BRPF1基因,构建pGBKT7-BRPF1和pGADT7-BRPF1质粒,酵母双杂交实验和GST-pulldown实验证明RHOX5蛋白亦可以直接结合BRPF1蛋白。BRPF1及其新型转录本BRPF2与RHOX5蛋白间的相互作用证实暗示了BRPF2极有可能与BRPF1竞争性结合RHOX5蛋白,为三种蛋白功能的研究提供了新的思路。
基金supported by National Key Research and Development Program of China(2017YFA0103802)the National Natural Science Foundation of China(81700100,31771630,81572766,81702784,and 81802974)+2 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06S029)Natural Science Foundation of Guangdong Provinee(2017A030312009 and 2016A030313238)Special Funds for Dapeng New District Industry Development(KY20160309).
文摘Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription.Although the functions of bromodomain-containing proteins in development,homeostasis,and disease states have been well studied,their role in self-renewal of hematopoietic stem and progenitor cells(HSPCs)remains poorly understood.Here,we performed a chemical screen using nine bromodomain inhibitors and found that the bromodomain and PHD finger-containing protein 1(Brpf1)inhibitor OF-1 enhanced the expansion of Lin−Sca-1+c-Kit+HSPCs ex vivo without skewing their lineage differentiation potential.Importantly,our results also revealed distinct functions of Brpf1 isoforms in HSPCs.Brpf1b promoted the expansion of HSPCs.By contrast,Brpf1a is the most abundant isoform in adult HSPCs but enhanced HSPC quiescence and decreased the HSPC expansion.Furthermore,inhibition of Brpf1a by OF-1 promoted histone acetylation and chromatin accessibility leading to increased expression of self-renewal-related genes(e.g.Mn1).The phenotypes produced by OF-1 treatment can be rescued by suppression of Mn1 in HSPCs.Our findings demonstrate that this novel bromodomain inhibitor OF-1 can promote the clinical application of HSPCs in transplantation.