Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the succ...Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the success of tag identification.An efficient anti-collision protocol is very crucially in RFID system.In this paper,an improved binary search anti-collision protocol namely BRTP is proposed to cope with the tag collision concern,which introduces a Bi-response mechanism.In Bi-response mechanism,two groups of tags allowed to reply to the reader in the same slot.According to Bi-response mechanism,the BRTP strengthens the tag identification of RFID network by reducing the total number of queries and exchanged messages between the reader and tags.Both theoretical analysis and numerical results verify the effectiveness of the proposed BRTP in various performance metrics including the number of total slots,system efficiency,communication complexity and total identification time.The BRTP is suitable to be applied in passive RFID systems.展开更多
In machine learning and data mining,feature selection(FS)is a traditional and complicated optimization problem.Since the run time increases exponentially,FS is treated as an NP-hard problem.The researcher’s effort to...In machine learning and data mining,feature selection(FS)is a traditional and complicated optimization problem.Since the run time increases exponentially,FS is treated as an NP-hard problem.The researcher’s effort to build a new FS solution was inspired by the ongoing need for an efficient FS framework and the success rates of swarming outcomes in different optimization scenarios.This paper presents two binary variants of a Hunger Games Search Optimization(HGSO)algorithm based on V-and S-shaped transfer functions within a wrapper FS model for choosing the best features from a large dataset.The proposed technique transforms the continuous HGSO into a binary variant using V-and S-shaped transfer functions(BHGSO-V and BHGSO-S).To validate the accuracy,16 famous UCI datasets are considered and compared with different state-of-the-art metaheuristic binary algorithms.The findings demonstrate that BHGSO-V achieves better performance in terms of the selected number of features,classification accuracy,run time,and fitness values than other state-of-the-art algorithms.The results demonstrate that the BHGSO-V algorithm can reduce dimensionality and choose the most helpful features for classification problems.The proposed BHGSO-V achieves 95%average classification accuracy for most of the datasets,and run time is less than 5 sec.for low and medium dimensional datasets and less than 10 sec for high dimensional datasets.展开更多
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no...This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.展开更多
In this paper,two methods are proposed to embed visual watermark into direct binary search(DBS)halftone images,which are called Adjusted Direct Binary Search(ADBS)and Dual Adjusted Direct Binary Search(DADBS).DADBS is...In this paper,two methods are proposed to embed visual watermark into direct binary search(DBS)halftone images,which are called Adjusted Direct Binary Search(ADBS)and Dual Adjusted Direct Binary Search(DADBS).DADBS is an improved version of ADBS.By using the proposed methods,the visual watermark will be embedded into two halftone images separately,thus,the watermark can be revealed when these two halftone images are overlaid.Experimental results show that both methods can achieve excellent image visual quality and decoded visual patterns.展开更多
Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting...Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting single instruction multiple date (SIMD) capacity of processors to improve the performance of tree search, and proposes several improvement methods on reported SIMD tree search algorithms. Based on blocking tree structure, blocking for memory alignment and dynamic blocking prefetch are proposed to optimize the overhead of memory access. Furthermore, as a way of non-linear loop unrolling, the search branch unwinding shows that the number of branches can exceed the data width of SIMD instructions in the SIMD search algorithm. The experiments suggest that blocking optimized SIMD tree search algorithm can achieve 1.6 times response speed faster than the un-optimized algorithm.展开更多
Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end u...Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end user tofind the exact search results among the huge paginated search results.Higher level of drill down search with category based search feature leads to get the most accurate search results but it increases the number and size of thefile system.The purpose of this manuscript is to implement a big data storage reduction binaryfile system model for category based drill down search engine that offers fast multi-levelfiltering capability.The basic methodology of the proposed model stores the search engine data in the binaryfile system model.To verify the effectiveness of the proposedfile system model,5 million unique keyword data are stored into a binaryfile,thereby analysing the proposedfile system with efficiency.Some experimental results are also provided based on real data that show our storage model speed and superiority.Experiments demonstrated that ourfile system expansion ratio is constant and it reduces the disk storage space up to 30%with conventional database/file system and it also increases the search performance for any levels of search.To discuss deeply,the paper starts with the short introduction of drill down search followed by the discussion of important technologies used to implement big data storage reduction system in detail.展开更多
Seven charge-coupled device (CCD) photometric times of light minimum of the overcontact binary BS Cas which were obtained from 2007 August to November and one CCD light curve in the R band which was observed on 2007...Seven charge-coupled device (CCD) photometric times of light minimum of the overcontact binary BS Cas which were obtained from 2007 August to November and one CCD light curve in the R band which was observed on 2007 September 24 and October 15, are presented. It is found that the light curve ofBS Cas has characteristics like a typical EW-type light variation. The light curve obtained by us is symmetric and shows total eclipses, which is very useful for determining photometric parameters with high precision. Photometric solutions were derived by using the 2003 version of the Wilson-Devinney code. It shows that BS Cas is a W-subtype overcontact binary (f = 27.5% ± 0.4%) with a mass ratio of q = 2.7188± 0.0040. The temperature difference between the two components is 190 K. Analysis of the 042 curve suggests that the period of AE Phe shows a long-term continuous decrease at a rate of dP/dt = - 2.45 × 10^-7 d yr^- 1 The long-time period decrease can be explained by mass transfer from the primary to the secondary.展开更多
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金This work was partially supported by the Key-Area Research and Development Program of Guangdong Province(2019B010136001,20190166)the Basic and Applied Basic Research Major Program for Guangdong Province(2019B030302002)the Science and Technology Planning Project of Guangdong Province LZC0023 and LZC0024.
文摘Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the success of tag identification.An efficient anti-collision protocol is very crucially in RFID system.In this paper,an improved binary search anti-collision protocol namely BRTP is proposed to cope with the tag collision concern,which introduces a Bi-response mechanism.In Bi-response mechanism,two groups of tags allowed to reply to the reader in the same slot.According to Bi-response mechanism,the BRTP strengthens the tag identification of RFID network by reducing the total number of queries and exchanged messages between the reader and tags.Both theoretical analysis and numerical results verify the effectiveness of the proposed BRTP in various performance metrics including the number of total slots,system efficiency,communication complexity and total identification time.The BRTP is suitable to be applied in passive RFID systems.
文摘In machine learning and data mining,feature selection(FS)is a traditional and complicated optimization problem.Since the run time increases exponentially,FS is treated as an NP-hard problem.The researcher’s effort to build a new FS solution was inspired by the ongoing need for an efficient FS framework and the success rates of swarming outcomes in different optimization scenarios.This paper presents two binary variants of a Hunger Games Search Optimization(HGSO)algorithm based on V-and S-shaped transfer functions within a wrapper FS model for choosing the best features from a large dataset.The proposed technique transforms the continuous HGSO into a binary variant using V-and S-shaped transfer functions(BHGSO-V and BHGSO-S).To validate the accuracy,16 famous UCI datasets are considered and compared with different state-of-the-art metaheuristic binary algorithms.The findings demonstrate that BHGSO-V achieves better performance in terms of the selected number of features,classification accuracy,run time,and fitness values than other state-of-the-art algorithms.The results demonstrate that the BHGSO-V algorithm can reduce dimensionality and choose the most helpful features for classification problems.The proposed BHGSO-V achieves 95%average classification accuracy for most of the datasets,and run time is less than 5 sec.for low and medium dimensional datasets and less than 10 sec for high dimensional datasets.
文摘This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.
文摘In this paper,two methods are proposed to embed visual watermark into direct binary search(DBS)halftone images,which are called Adjusted Direct Binary Search(ADBS)and Dual Adjusted Direct Binary Search(DADBS).DADBS is an improved version of ADBS.By using the proposed methods,the visual watermark will be embedded into two halftone images separately,thus,the watermark can be revealed when these two halftone images are overlaid.Experimental results show that both methods can achieve excellent image visual quality and decoded visual patterns.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the Graduate Student Innovation Foundation of Shanghai University(Grant No.SHUCX112167)
文摘Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting single instruction multiple date (SIMD) capacity of processors to improve the performance of tree search, and proposes several improvement methods on reported SIMD tree search algorithms. Based on blocking tree structure, blocking for memory alignment and dynamic blocking prefetch are proposed to optimize the overhead of memory access. Furthermore, as a way of non-linear loop unrolling, the search branch unwinding shows that the number of branches can exceed the data width of SIMD instructions in the SIMD search algorithm. The experiments suggest that blocking optimized SIMD tree search algorithm can achieve 1.6 times response speed faster than the un-optimized algorithm.
文摘Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end user tofind the exact search results among the huge paginated search results.Higher level of drill down search with category based search feature leads to get the most accurate search results but it increases the number and size of thefile system.The purpose of this manuscript is to implement a big data storage reduction binaryfile system model for category based drill down search engine that offers fast multi-levelfiltering capability.The basic methodology of the proposed model stores the search engine data in the binaryfile system model.To verify the effectiveness of the proposedfile system model,5 million unique keyword data are stored into a binaryfile,thereby analysing the proposedfile system with efficiency.Some experimental results are also provided based on real data that show our storage model speed and superiority.Experiments demonstrated that ourfile system expansion ratio is constant and it reduces the disk storage space up to 30%with conventional database/file system and it also increases the search performance for any levels of search.To discuss deeply,the paper starts with the short introduction of drill down search followed by the discussion of important technologies used to implement big data storage reduction system in detail.
基金supported by the National Natural Science Foundation of China (Grant Nos 10973037,10903026 and 10778718)the National Key Fundamental Research Project (Grant 2007CB815406)the Yunnan Natural Science Foundation (Nos.2008CD157 and 2009CD122)
文摘Seven charge-coupled device (CCD) photometric times of light minimum of the overcontact binary BS Cas which were obtained from 2007 August to November and one CCD light curve in the R band which was observed on 2007 September 24 and October 15, are presented. It is found that the light curve ofBS Cas has characteristics like a typical EW-type light variation. The light curve obtained by us is symmetric and shows total eclipses, which is very useful for determining photometric parameters with high precision. Photometric solutions were derived by using the 2003 version of the Wilson-Devinney code. It shows that BS Cas is a W-subtype overcontact binary (f = 27.5% ± 0.4%) with a mass ratio of q = 2.7188± 0.0040. The temperature difference between the two components is 190 K. Analysis of the 042 curve suggests that the period of AE Phe shows a long-term continuous decrease at a rate of dP/dt = - 2.45 × 10^-7 d yr^- 1 The long-time period decrease can be explained by mass transfer from the primary to the secondary.