A hybrid energy transmission pipeline is proposed with the aim of long-distance cooperative transmission of electricity and chemical fuels, which is composed of an inner high-temperature superconducting (HTS) power ca...A hybrid energy transmission pipeline is proposed with the aim of long-distance cooperative transmission of electricity and chemical fuels, which is composed of an inner high-temperature superconducting (HTS) power cable and outer liquefied natural gas (LNG) pipeline. The flowing LNG could maintain the operating temperature of the inner HTS power cable within the range of 85 K-90 K, thus the Bi-2223 superconductors in the HTS power cable produce little Joule loss with the transmission current below the critical current. Owing to the advantages of high power density, low transmission losses and economical manufacturing costs, the hybrid energy transmission pipeline is expected to be widely utilized in the near future. In order to ensure the safety of the HTS power cable and explosive LNG in case of short-circuit faults, this paper tests and analyzes the characteristics of Bi-2223 HTS tapes of the Type HT-CA, Type HT-SS and Type H models under short-circuit current impacts at the LNG cooling temperature (85 K-90 K). An experimental platform is designed and established for the ampacity tests of HTS tapes above LN2 cooling temperature (77 K). The AC over-current impact tests at 85 K-90 K are carried out on each sample of Bi-2223 tapes respectively, and the experimental results are analyzed and compared to evaluate their performances under different operating conditions. The results indicate that the Type HT-CA tape can withstand 50 Hz short-circuit current impact with the amplitude of 1108 A (10 times of critical current Ic ) for 100 ms at 90 K, and its resistance is the smallest of the three tested samples under similar current impacts. Therefore, the Type HT-CA Bi-2223 tape is the optimal superconductor of the HTS power cable in the hybrid energy transmission pipeline.展开更多
Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers wit...Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations.展开更多
The effects of deformation and heat-treatment on texture of BSCCO-2223/Ag tapes were investigatedby using single orientation quantitative texture analytical methods. The results show that when tapes weresintered at 83...The effects of deformation and heat-treatment on texture of BSCCO-2223/Ag tapes were investigatedby using single orientation quantitative texture analytical methods. The results show that when tapes weresintered at 835℃ for 24~48 h, the texture developed quickly, and further prolonging sintering tirne hadno significant influence on it. With the increase of deformation rate, the volume fraction of c-axis texturewas improved in linear form at first and then changed slowly. The highest volume fraction of c-axis texture(vol%)in these experiments is 33 . 49 % .展开更多
The results of the preliminary development of the HTS conductor based on the VS-type design and parallel stacks for the central solenoid of the compact thermonuclear reactor TRT are presented. One of the main problems...The results of the preliminary development of the HTS conductor based on the VS-type design and parallel stacks for the central solenoid of the compact thermonuclear reactor TRT are presented. One of the main problems that need to be solved for the successful implementation of such projects is the creation of high-current high-temperature superconducting (HTS) conductors for Toroidal Field coils (TF) and Central Solenoid (CS) sections. The conductor must have a high engineering current density of at least 90 A/mm<sup>2</sup>. The induction of the magnetic field in the central solenoid reaches 14 T, which leads to the occurrence of large mechanical stresses due to the influence of Lorentz forces. Like many large magnets, CS has a lot of stored energy. For the safe withdrawal of stored energy from the magnet, it requires the inclusion of elements in the conductor that provide an acceptable level of electrical voltage and heating of the conductor insulation. Thus, a sufficient amount of stabilizing and reinforcing materials should be placed in the conductor. In addition, the “cable-in-conduit” type of conductor must have channels for pumping the refrigerant. Two fundamentally different versions of the conductor based on radially arranged REBCO tapes and on the basis of pre-assembled tape packages are considered. Based on the analysis of the magnetic field distribution in the conductor by finite element method, the design characteristics of the proposed conductors under various operating modes of the electromagnetic system (EMS) of the tokamak TRT was evaluated. The results of the evaluation of the current carrying capacity of the conductor and the estimation of energy losses in a changing magnetic field in comparison with known methods are also presented.展开更多
The development of high temperature superconducting(HTS)tapes has recently made great progress,and Bi-based tapes(1 G) and YBCO coated conductor(2 G)are commercially fabricated with practical length.Application of HTS...The development of high temperature superconducting(HTS)tapes has recently made great progress,and Bi-based tapes(1 G) and YBCO coated conductor(2 G)are commercially fabricated with practical length.Application of HTS in electric power apparatuses made important achievement,various superconducting devices were demonstrated in grid,laying solid foundation for their commercialization.However,since their intrinsic microscopic defects such as weak-link,granularity,small second phase likely exist,critical current and index n value of the HTS tapes in practical length are impossible homogeneous,which have significant influences on safety,stability and efficiency of the HTS apparatuses.Therefore,critical current and index n value are two important parameters describing inhomogeneity of HTS tapes,thus two important indices for evaluating quality of practical long HTS tapes.This paper focuses on main progresses in inhomogeneity of critical current and index n value measurements on HTS tapes using contact-free methods.The statistical analytical methods evaluating the inhomogeneity of critical current and index n value are suggested.They can provide essential references for design and operation of HTS apparatuses.展开更多
Based on characteristics of alternating current (AC) critical current of high temperature superconducting (HTS) tapes on the frequency, this paper focuses on AC voltage-current (U-I) behaviors of two kinds of hi...Based on characteristics of alternating current (AC) critical current of high temperature superconducting (HTS) tapes on the frequency, this paper focuses on AC voltage-current (U-I) behaviors of two kinds of high temperature superconducting tapes, by which BSCCO and YBCO carrying different frequency AC currents are tested in liquid nitrogen temperature of 77 K. It is shown that the AC U-I characteristic curves of different tapes consist of two parts, that is, the resistive part and the hysteresis part. Additionally, the n values of the two parts and the relationship between AC critical current and frequency are obtained through experiments. The experimental results agree with calculated ones well, which is useful for the application of HTS tapes to power technology.展开更多
基金supported by National Key R&D Project under Grant(2018YFB0904400).
文摘A hybrid energy transmission pipeline is proposed with the aim of long-distance cooperative transmission of electricity and chemical fuels, which is composed of an inner high-temperature superconducting (HTS) power cable and outer liquefied natural gas (LNG) pipeline. The flowing LNG could maintain the operating temperature of the inner HTS power cable within the range of 85 K-90 K, thus the Bi-2223 superconductors in the HTS power cable produce little Joule loss with the transmission current below the critical current. Owing to the advantages of high power density, low transmission losses and economical manufacturing costs, the hybrid energy transmission pipeline is expected to be widely utilized in the near future. In order to ensure the safety of the HTS power cable and explosive LNG in case of short-circuit faults, this paper tests and analyzes the characteristics of Bi-2223 HTS tapes of the Type HT-CA, Type HT-SS and Type H models under short-circuit current impacts at the LNG cooling temperature (85 K-90 K). An experimental platform is designed and established for the ampacity tests of HTS tapes above LN2 cooling temperature (77 K). The AC over-current impact tests at 85 K-90 K are carried out on each sample of Bi-2223 tapes respectively, and the experimental results are analyzed and compared to evaluate their performances under different operating conditions. The results indicate that the Type HT-CA tape can withstand 50 Hz short-circuit current impact with the amplitude of 1108 A (10 times of critical current Ic ) for 100 ms at 90 K, and its resistance is the smallest of the three tested samples under similar current impacts. Therefore, the Type HT-CA Bi-2223 tape is the optimal superconductor of the HTS power cable in the hybrid energy transmission pipeline.
基金Project supported by the National Natural Science Foundation of China(Nos.U2241267,1217215511872195)。
文摘Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations.
文摘The effects of deformation and heat-treatment on texture of BSCCO-2223/Ag tapes were investigatedby using single orientation quantitative texture analytical methods. The results show that when tapes weresintered at 835℃ for 24~48 h, the texture developed quickly, and further prolonging sintering tirne hadno significant influence on it. With the increase of deformation rate, the volume fraction of c-axis texturewas improved in linear form at first and then changed slowly. The highest volume fraction of c-axis texture(vol%)in these experiments is 33 . 49 % .
文摘The results of the preliminary development of the HTS conductor based on the VS-type design and parallel stacks for the central solenoid of the compact thermonuclear reactor TRT are presented. One of the main problems that need to be solved for the successful implementation of such projects is the creation of high-current high-temperature superconducting (HTS) conductors for Toroidal Field coils (TF) and Central Solenoid (CS) sections. The conductor must have a high engineering current density of at least 90 A/mm<sup>2</sup>. The induction of the magnetic field in the central solenoid reaches 14 T, which leads to the occurrence of large mechanical stresses due to the influence of Lorentz forces. Like many large magnets, CS has a lot of stored energy. For the safe withdrawal of stored energy from the magnet, it requires the inclusion of elements in the conductor that provide an acceptable level of electrical voltage and heating of the conductor insulation. Thus, a sufficient amount of stabilizing and reinforcing materials should be placed in the conductor. In addition, the “cable-in-conduit” type of conductor must have channels for pumping the refrigerant. Two fundamentally different versions of the conductor based on radially arranged REBCO tapes and on the basis of pre-assembled tape packages are considered. Based on the analysis of the magnetic field distribution in the conductor by finite element method, the design characteristics of the proposed conductors under various operating modes of the electromagnetic system (EMS) of the tokamak TRT was evaluated. The results of the evaluation of the current carrying capacity of the conductor and the estimation of energy losses in a changing magnetic field in comparison with known methods are also presented.
基金supported by the Specialized Research Fund for the Doc-toral Program of Higher Education(Grant No.D00033)the Foundation of North China Electric Power University(Grant No.KH0194)
文摘The development of high temperature superconducting(HTS)tapes has recently made great progress,and Bi-based tapes(1 G) and YBCO coated conductor(2 G)are commercially fabricated with practical length.Application of HTS in electric power apparatuses made important achievement,various superconducting devices were demonstrated in grid,laying solid foundation for their commercialization.However,since their intrinsic microscopic defects such as weak-link,granularity,small second phase likely exist,critical current and index n value of the HTS tapes in practical length are impossible homogeneous,which have significant influences on safety,stability and efficiency of the HTS apparatuses.Therefore,critical current and index n value are two important parameters describing inhomogeneity of HTS tapes,thus two important indices for evaluating quality of practical long HTS tapes.This paper focuses on main progresses in inhomogeneity of critical current and index n value measurements on HTS tapes using contact-free methods.The statistical analytical methods evaluating the inhomogeneity of critical current and index n value are suggested.They can provide essential references for design and operation of HTS apparatuses.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 51077051).
文摘Based on characteristics of alternating current (AC) critical current of high temperature superconducting (HTS) tapes on the frequency, this paper focuses on AC voltage-current (U-I) behaviors of two kinds of high temperature superconducting tapes, by which BSCCO and YBCO carrying different frequency AC currents are tested in liquid nitrogen temperature of 77 K. It is shown that the AC U-I characteristic curves of different tapes consist of two parts, that is, the resistive part and the hysteresis part. Additionally, the n values of the two parts and the relationship between AC critical current and frequency are obtained through experiments. The experimental results agree with calculated ones well, which is useful for the application of HTS tapes to power technology.