Precise Point Positioning (PPP) is traditionally based on dual-frequency observations of GPS or GPS/GLONASS satellite navigation systems. Recently, new GNSS constellations, such as the European Galileo and the Chinese...Precise Point Positioning (PPP) is traditionally based on dual-frequency observations of GPS or GPS/GLONASS satellite navigation systems. Recently, new GNSS constellations, such as the European Galileo and the Chinese BeiDou are developing rapidly. With the new IGS project known as IGS MGEX which produces highly accurate GNSS orbital and clock products, multi-constellations PPP becomes feasible. On the other hand, the un-differenced ionosphere-free is commonly used as standard precise point positioning technique. However, the existence of receiver and satellite biases, which are absorbed by the ambiguities, significantly affected the convergence time. Between-satellite-single-difference (BSSD) ionosphere free PPP technique is traditionally used to cancel out the receiver related biases from both code and phase measurements. This paper introduces multiple ambiguity datum (MAD) PPP technique which can be applied to separate the code and phase measurements removing the receiver and satellite code biases affecting the GNSS receiver phase clock and ambiguities parameters. The mathematical model for the three GNSS PPP techniques is developed by considering the current full GNSS constellations. In addition, the current limitations of the GNSS PPP techniques are discussed. Static post-processing results for a number of IGS MGEX GNSS stations are presented to investigate the contribution of the newly GNSS system observations and the newly developed GNSS PPP techniques and its limitations. The results indicate that the additional Galileo and BeiDou observations have a marginal effect on the positioning accuracy and convergence time compared with the existence combined GPS/GLONASS PPP. However, reference to GPS PPP, the contribution of BeiDou observations can be considered geographically dependent. In addition, the results show that the BSSD PPP models slightly enhance the convergence time compared with other PPP techniques. However, both the standard un-differenced and the developed multiple ambiguity datum techniques present comparable positioning accuracy and convergence time due to the lack of code and phase-based satellite clock products and the mathematical correlation between the positioning and ambiguity parameters.展开更多
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou. Our model is based on between-...This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou. Our model is based on between-satellite single-difference (BSSD) linear combination, which cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. The reference satellite can be selected from any satellite system GPS, Galileo, and BeiDou when forming BSSD linear combinations. Natural Resources Canada’s GPS Pace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct both of the GPS and Galileo measurements. It is shown that using the BSSD linear combinations improves the precision of the estimated parameters by about 25% compared with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for both BSSD scenarios, which represent about 50% improvement in comparison with the GPS-only PPP solution.展开更多
This paper introduces a new precise point positioning (PPP) model, which combines single-fre- quency GPS/Galileo observations in between-satellite single-difference (BSSD) mode. In the absence of multipath, all receiv...This paper introduces a new precise point positioning (PPP) model, which combines single-fre- quency GPS/Galileo observations in between-satellite single-difference (BSSD) mode. In the absence of multipath, all receiver-related errors and biases are cancelled out when forming BSSD for a specific constellation. This leaves the satellite originating errors and atmospheric delays un- modelled. Combining GPS and Galileo observables introduces additional biases that have to be modelled, including the GPS to Galileo time offset (GGTO) and the inter-system bias. This paper models all PPP errors rigorously to improve the single-frequency GPS/Galileo PPP solution. GPSPace PPP software of Natural Resources Canada (NRCan) is modified to enable a GPS/Galileo PPP solution and to handle the newly introduced biases. A total of 12 data sets representing the GPS/Galileo measurements of six IGS-MEGX stations are processed to verify the newly developed PPP model. Precise satellite orbit and clock corrections from IGS-MEGX networks are used for both GPS and Galileo measurements. It is shown that sub-decimeter level accuracy is possible with single-frequency GPS/Galileo PPP. In addition, the PPP solution convergence time is improved from approximately 100 minutes for the un-differenced single-frequency GPS/Galileo solution to approximately 65 minutes for the BSSD counterpart when a single reference satellite is used. Moreover, an improvement in the PPP solution convergence time of 35% and 15% is obtained when one and two reference satellites are used, respectively.展开更多
文摘Precise Point Positioning (PPP) is traditionally based on dual-frequency observations of GPS or GPS/GLONASS satellite navigation systems. Recently, new GNSS constellations, such as the European Galileo and the Chinese BeiDou are developing rapidly. With the new IGS project known as IGS MGEX which produces highly accurate GNSS orbital and clock products, multi-constellations PPP becomes feasible. On the other hand, the un-differenced ionosphere-free is commonly used as standard precise point positioning technique. However, the existence of receiver and satellite biases, which are absorbed by the ambiguities, significantly affected the convergence time. Between-satellite-single-difference (BSSD) ionosphere free PPP technique is traditionally used to cancel out the receiver related biases from both code and phase measurements. This paper introduces multiple ambiguity datum (MAD) PPP technique which can be applied to separate the code and phase measurements removing the receiver and satellite code biases affecting the GNSS receiver phase clock and ambiguities parameters. The mathematical model for the three GNSS PPP techniques is developed by considering the current full GNSS constellations. In addition, the current limitations of the GNSS PPP techniques are discussed. Static post-processing results for a number of IGS MGEX GNSS stations are presented to investigate the contribution of the newly GNSS system observations and the newly developed GNSS PPP techniques and its limitations. The results indicate that the additional Galileo and BeiDou observations have a marginal effect on the positioning accuracy and convergence time compared with the existence combined GPS/GLONASS PPP. However, reference to GPS PPP, the contribution of BeiDou observations can be considered geographically dependent. In addition, the results show that the BSSD PPP models slightly enhance the convergence time compared with other PPP techniques. However, both the standard un-differenced and the developed multiple ambiguity datum techniques present comparable positioning accuracy and convergence time due to the lack of code and phase-based satellite clock products and the mathematical correlation between the positioning and ambiguity parameters.
文摘This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou. Our model is based on between-satellite single-difference (BSSD) linear combination, which cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. The reference satellite can be selected from any satellite system GPS, Galileo, and BeiDou when forming BSSD linear combinations. Natural Resources Canada’s GPS Pace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct both of the GPS and Galileo measurements. It is shown that using the BSSD linear combinations improves the precision of the estimated parameters by about 25% compared with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for both BSSD scenarios, which represent about 50% improvement in comparison with the GPS-only PPP solution.
文摘This paper introduces a new precise point positioning (PPP) model, which combines single-fre- quency GPS/Galileo observations in between-satellite single-difference (BSSD) mode. In the absence of multipath, all receiver-related errors and biases are cancelled out when forming BSSD for a specific constellation. This leaves the satellite originating errors and atmospheric delays un- modelled. Combining GPS and Galileo observables introduces additional biases that have to be modelled, including the GPS to Galileo time offset (GGTO) and the inter-system bias. This paper models all PPP errors rigorously to improve the single-frequency GPS/Galileo PPP solution. GPSPace PPP software of Natural Resources Canada (NRCan) is modified to enable a GPS/Galileo PPP solution and to handle the newly introduced biases. A total of 12 data sets representing the GPS/Galileo measurements of six IGS-MEGX stations are processed to verify the newly developed PPP model. Precise satellite orbit and clock corrections from IGS-MEGX networks are used for both GPS and Galileo measurements. It is shown that sub-decimeter level accuracy is possible with single-frequency GPS/Galileo PPP. In addition, the PPP solution convergence time is improved from approximately 100 minutes for the un-differenced single-frequency GPS/Galileo solution to approximately 65 minutes for the BSSD counterpart when a single reference satellite is used. Moreover, an improvement in the PPP solution convergence time of 35% and 15% is obtained when one and two reference satellites are used, respectively.