To solve the problem of the low on-state current in p-type tunnel field-effect transistors(p-TFETs),this paper analyzes the mechanism of adjusting the tunneling current of a TFET device determined by studying the infl...To solve the problem of the low on-state current in p-type tunnel field-effect transistors(p-TFETs),this paper analyzes the mechanism of adjusting the tunneling current of a TFET device determined by studying the influence of the peak position of ion implantation on the potential of the p-TFET device surface and the width of the tunneling barrier.Doping-regulated silicon-based high on-state p-TFET devices are designed and fabricated,and the test results show that the on-state current of the fabricated devices can be increased by about two orders of magnitude compared with the current of other devices with the same structure.This method provides a new idea for the realization of high on-state current TFET devices.展开更多
A novel vertical graded source tunnel field-effect transistor(VGS-TFET)is proposed to improve device performance.By introducing a source with linearly graded component,the on-state current increases by more than two d...A novel vertical graded source tunnel field-effect transistor(VGS-TFET)is proposed to improve device performance.By introducing a source with linearly graded component,the on-state current increases by more than two decades higher than that of the conventional GaAs TFETs without sacrificing the subthreshold swing(SS)due to the improved band-to-band tunneling efficiency.Compared with the conventional TFETs,much larger drive current range can be achieved by the proposed VGS-TFET with SS below the thermionic limitation of 60 mV/dec.Furthermore,the minimum SS about 20 mV/dec indicates its promising potential for further ultralow power applications.展开更多
We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AIGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain ...We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AIGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gatel ) with two different work functions (gate = 4.2 eV, gatel = 5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4 × 10^-6 A/μm, the off current remains as low as 9.1 × 10^-14 A/μm. So /ON/OFF ratio of 10^8 is achieved. Point subthreshold swing has also been reduced to a value of 41 mV/decade for TiO2 gate material.展开更多
We present a GaSb/In As junctionless tunnel FET and investigate its static device characteristics. The proposed structure presents tremendous performance at a very low supply voltage of 0.4 V. The key idea is to the p...We present a GaSb/In As junctionless tunnel FET and investigate its static device characteristics. The proposed structure presents tremendous performance at a very low supply voltage of 0.4 V. The key idea is to the present device architecture, which can be exploited as a digital switching device for sub 20 nm technology.Numerical simulations resulted in an IOFF of 8×10^-17A/ m, ION of 9 A/ m, ION/IOFF of 1×10^11,subthreshold slope of 9.33 m V/dec and DIBL of 87 m V/V for GaSb/InAs JLTFET at a temperature of 300 K,gate length of 20 nm, HfO2 gate dielectric thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.4 V.展开更多
We propose a nanoscale single gate ultra thin body intrinsic channel tunnel field effect transistor using the charge plasma concept for ultra low power applications. The characteristics of TFETs (having low leakage)...We propose a nanoscale single gate ultra thin body intrinsic channel tunnel field effect transistor using the charge plasma concept for ultra low power applications. The characteristics of TFETs (having low leakage) are improved by junctionless TFETs through blending advantages of Junctionless FETs (with high on current). We further improved the characteristics, simultaneously simplifying the structure at a very low power rating using an InAs channel. We found that the proposed device structure has reduced short channel effects and parasitics and provides high speed operation even at a very low supply voltage with low leakage. Simulations resulted in Iovv of - 9 × 10-16A/um, IoN of ,-20uA/um, ION/IoFF of--2× 1010, threshold voltage of 0.057 V, subthreshold slope of 7 mV/dec and DIBL of 86 mV/V for PolyGate/HfO2/InAs TFET at a temperature of 300 K, gate length of 20 nm, oxide thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.2 V.展开更多
This paper proposes the charge plasma based dual electrode doping-less tunnel FET (DEDLTFET). The paper compares the device performance of the conventional doping-less TFET (DLTFET) and doped TFET (DGTFET). DEDL...This paper proposes the charge plasma based dual electrode doping-less tunnel FET (DEDLTFET). The paper compares the device performance of the conventional doping-less TFET (DLTFET) and doped TFET (DGTFET). DEDLTEFT gives the superior results with high ON state current (/ON - 0.56 mA/um), ION/IoFv ratio - 9.12 ×1013 and an average subthreshold swing (AV-SS -- 48 mV/dec). The variation of different device parameters such as channel length, gate oxide material, gate oxide thickness, silicon thickness, gate work function and temperature variation are done and compared with DLTFET and DGTFET. Through the extensive analysis it is found that DEDLTFET shows the better performance than the other two devices, which gives the indication for an excellent future in low power applications.展开更多
Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS- like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates ...Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS- like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold perfor- mance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application.展开更多
基金Project supported by the Key Research and Development Program of Shaanxi(Grant No.2021GY-010)the National Defense Science and Technology Foundation Strengthening Program of China(Grant No.2019-XXXX-XX-236-00).
文摘To solve the problem of the low on-state current in p-type tunnel field-effect transistors(p-TFETs),this paper analyzes the mechanism of adjusting the tunneling current of a TFET device determined by studying the influence of the peak position of ion implantation on the potential of the p-TFET device surface and the width of the tunneling barrier.Doping-regulated silicon-based high on-state p-TFET devices are designed and fabricated,and the test results show that the on-state current of the fabricated devices can be increased by about two orders of magnitude compared with the current of other devices with the same structure.This method provides a new idea for the realization of high on-state current TFET devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.90304190002).
文摘A novel vertical graded source tunnel field-effect transistor(VGS-TFET)is proposed to improve device performance.By introducing a source with linearly graded component,the on-state current increases by more than two decades higher than that of the conventional GaAs TFETs without sacrificing the subthreshold swing(SS)due to the improved band-to-band tunneling efficiency.Compared with the conventional TFETs,much larger drive current range can be achieved by the proposed VGS-TFET with SS below the thermionic limitation of 60 mV/dec.Furthermore,the minimum SS about 20 mV/dec indicates its promising potential for further ultralow power applications.
文摘We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AIGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gatel ) with two different work functions (gate = 4.2 eV, gatel = 5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4 × 10^-6 A/μm, the off current remains as low as 9.1 × 10^-14 A/μm. So /ON/OFF ratio of 10^8 is achieved. Point subthreshold swing has also been reduced to a value of 41 mV/decade for TiO2 gate material.
文摘We present a GaSb/In As junctionless tunnel FET and investigate its static device characteristics. The proposed structure presents tremendous performance at a very low supply voltage of 0.4 V. The key idea is to the present device architecture, which can be exploited as a digital switching device for sub 20 nm technology.Numerical simulations resulted in an IOFF of 8×10^-17A/ m, ION of 9 A/ m, ION/IOFF of 1×10^11,subthreshold slope of 9.33 m V/dec and DIBL of 87 m V/V for GaSb/InAs JLTFET at a temperature of 300 K,gate length of 20 nm, HfO2 gate dielectric thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.4 V.
文摘We propose a nanoscale single gate ultra thin body intrinsic channel tunnel field effect transistor using the charge plasma concept for ultra low power applications. The characteristics of TFETs (having low leakage) are improved by junctionless TFETs through blending advantages of Junctionless FETs (with high on current). We further improved the characteristics, simultaneously simplifying the structure at a very low power rating using an InAs channel. We found that the proposed device structure has reduced short channel effects and parasitics and provides high speed operation even at a very low supply voltage with low leakage. Simulations resulted in Iovv of - 9 × 10-16A/um, IoN of ,-20uA/um, ION/IoFF of--2× 1010, threshold voltage of 0.057 V, subthreshold slope of 7 mV/dec and DIBL of 86 mV/V for PolyGate/HfO2/InAs TFET at a temperature of 300 K, gate length of 20 nm, oxide thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.2 V.
文摘This paper proposes the charge plasma based dual electrode doping-less tunnel FET (DEDLTFET). The paper compares the device performance of the conventional doping-less TFET (DLTFET) and doped TFET (DGTFET). DEDLTEFT gives the superior results with high ON state current (/ON - 0.56 mA/um), ION/IoFv ratio - 9.12 ×1013 and an average subthreshold swing (AV-SS -- 48 mV/dec). The variation of different device parameters such as channel length, gate oxide material, gate oxide thickness, silicon thickness, gate work function and temperature variation are done and compared with DLTFET and DGTFET. Through the extensive analysis it is found that DEDLTFET shows the better performance than the other two devices, which gives the indication for an excellent future in low power applications.
基金Project supported by the National High-Tech Research & Development Program of China(Nos.2009AA01Z124,2009AA01Z114)
文摘Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS- like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold perfor- mance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application.