The quantitative trait loci (QTLs) for cold tolerance at the budburst period (CTBP) was identified using a F2:3 population including 200 lines derived from a cross of indica and japonica Milyang 23/Jileng 1. A molec...The quantitative trait loci (QTLs) for cold tolerance at the budburst period (CTBP) was identified using a F2:3 population including 200 lines derived from a cross of indica and japonica Milyang 23/Jileng 1. A molecular linkage map of 97 SSR markers was constructed using interval mapping and covered a total length of 1 357.3 cM with an average distance of 13.99 cM, between adjacent markers in rice genome. The CTBP of F3 lines was evaluated at 5℃, and the survival seedling rate after treating under low temperature at the budburst period was used as cold tolerance index for CTBP. A continuous distribution near to normal for CTBP was observed in F3 lines, CTBP is a quantitative trait which was controlled by some genes. Three QTLs on chromosomes 2, 4 and 7 which are associated with CTBP were detected on location of RM6-RM240, RM273-RM303, RM214-RM11, respectively, which explained the range of the observed phenotypic variance from 11.5 to 20.5%. qCTBP4 detected on RM273-RM303 of chromosome 4 explained 20.5% of the observed phenotypic variance. The effect of qCTBP4’s allelic gene comes from Jileng 1., MSc; Correspondence展开更多
Conifer-feeding budworms emerge from overwintering sites as small larvae in early spring, several days before budburst, and mine old needles. These early-emerging larvae suffer considerable mortality during this forag...Conifer-feeding budworms emerge from overwintering sites as small larvae in early spring, several days before budburst, and mine old needles. These early-emerging larvae suffer considerable mortality during this foraging period as they disperse in search of available, current-year buds. Once buds flush, surviving budworms construct feeding shelters and must complete maturation before fresh host foliage senesces and lignifies later in the summer. Late-developing larvae suffer greater mortality and survivors have lower fecundity when feeding on older foliage. Thus, there is a seasonal trade-off in fitness associated with host synchrony: early-emerging budworms have a greater risk of mortality during spring dispersal but gain better access to the most nutritious foliage, while, on the other hand, late-emerging larvae incur a lower risk during the initial foraging period but must contend with rapidly diminishing resource quality at the end of the feeding period. We investigate the balance that results from these early-season and late-season synchrony fitness trade-offs using the concept of the phenological window. Parameters associated with the variation in the phenological window are used to estimate generational fitness as a function of host-plant synchrony. Because defoliation modifies these relationships, it is also included in the analysis. We show that fitness trade-offs characterizing the phenological window result in a robust synchrony relationship between budworm and host plant over a wide geographic range in southern British Columbia, Canada.展开更多
基金supported by the National Natural Science Foundation of China(30070421)the 10th Five-Year National Key Research Program(2001BA511B02)Cooperative Research Between China and Korea(2002-2004).
文摘The quantitative trait loci (QTLs) for cold tolerance at the budburst period (CTBP) was identified using a F2:3 population including 200 lines derived from a cross of indica and japonica Milyang 23/Jileng 1. A molecular linkage map of 97 SSR markers was constructed using interval mapping and covered a total length of 1 357.3 cM with an average distance of 13.99 cM, between adjacent markers in rice genome. The CTBP of F3 lines was evaluated at 5℃, and the survival seedling rate after treating under low temperature at the budburst period was used as cold tolerance index for CTBP. A continuous distribution near to normal for CTBP was observed in F3 lines, CTBP is a quantitative trait which was controlled by some genes. Three QTLs on chromosomes 2, 4 and 7 which are associated with CTBP were detected on location of RM6-RM240, RM273-RM303, RM214-RM11, respectively, which explained the range of the observed phenotypic variance from 11.5 to 20.5%. qCTBP4 detected on RM273-RM303 of chromosome 4 explained 20.5% of the observed phenotypic variance. The effect of qCTBP4’s allelic gene comes from Jileng 1., MSc; Correspondence
文摘Conifer-feeding budworms emerge from overwintering sites as small larvae in early spring, several days before budburst, and mine old needles. These early-emerging larvae suffer considerable mortality during this foraging period as they disperse in search of available, current-year buds. Once buds flush, surviving budworms construct feeding shelters and must complete maturation before fresh host foliage senesces and lignifies later in the summer. Late-developing larvae suffer greater mortality and survivors have lower fecundity when feeding on older foliage. Thus, there is a seasonal trade-off in fitness associated with host synchrony: early-emerging budworms have a greater risk of mortality during spring dispersal but gain better access to the most nutritious foliage, while, on the other hand, late-emerging larvae incur a lower risk during the initial foraging period but must contend with rapidly diminishing resource quality at the end of the feeding period. We investigate the balance that results from these early-season and late-season synchrony fitness trade-offs using the concept of the phenological window. Parameters associated with the variation in the phenological window are used to estimate generational fitness as a function of host-plant synchrony. Because defoliation modifies these relationships, it is also included in the analysis. We show that fitness trade-offs characterizing the phenological window result in a robust synchrony relationship between budworm and host plant over a wide geographic range in southern British Columbia, Canada.