This study explored the utility of flours of rubber seed, coconut and groundnut kernels, and de-oiled cakes of coconut and groundnut as solid substrate for the production of lipase by Pseudomonas aeruginosa strain BUP...This study explored the utility of flours of rubber seed, coconut and groundnut kernels, and de-oiled cakes of coconut and groundnut as solid substrate for the production of lipase by Pseudomonas aeruginosa strain BUP2 (MTCC No. 5924), a novel bacterium reported from the rumen of Malabari goat. Various proportions (10%, 20%, 30%, 40% or 50%) of flours or cakes were prepared (w/v) with BUP medium (pH 4, 5, 6, 7 or 8), and incubated at different temperature (25°C, 28°C, 30°C or 32°C) for 24 to 96 h. The samples were assayed for lipase activity at 24 h intervals. The rubber seed flour (20%)-BUP medium supported the maximum lipase production (871 U/gds) at 48h incubation (pH 6, 28°C), followed by ground nut flour (398 U/gds), while ground nut cake supported the least lipase production (244 U/gds). From this, it is evident that the cheaply available rubber seed is an efficient substrate for the production of lipase, irrespective of its known demerit that it contains the limarin, a toxin;in fact, we could not detect limarin in the fermented matter. Thus, the utility of rubber seed for the production of a costly enzyme is reported from a novel rumen bacterium, which would be advantageous for rubber farmers.展开更多
This study focuses on the isolation and characterization of a novel strain of siderophore producing bacterium, i.e., Pseudomonas aeruginosa BUP2 (Pa BUP2) from the rumen of Malabari goat, coupled with qualitative and ...This study focuses on the isolation and characterization of a novel strain of siderophore producing bacterium, i.e., Pseudomonas aeruginosa BUP2 (Pa BUP2) from the rumen of Malabari goat, coupled with qualitative and quantitative analyses of the siderophore produced by it. Pa BUP2—a facultative anaerobe was tuned to be an aerobe by repeatedly growing in Benjamin flask. The new isolate was grown in a specially designed semi-synthetic medium, designated as BUP medium, and the yellowish-green pigment produced was identified as a typical siderophore by spectrophotometry, Chromazurol-S assay, thin layer chromatography and isolectric focusing (IEF). The characteristic orange fluorescence upon UV irradiation on chromatogram and absorption maximum at λ404 confirmed that the characteristic siderophore produced by Pa BUP2 was a typical pyoverdine (PVD). This PVD was further categorized under type 2 by comparing its profile on the IEF gel with that of the representative strains of each PVD types, viz., Pa O1, Pa ATCC 27853 and Pa6. Moreover, the type 2 PVD was purified by XAD-4 Amberlite column chromatography and quantified;maximum yield (11.17 mg/ml) was observed on day 4 of incubation (37°C). Thus, it was confirmed that the bacterium isolated from the rumen content of Malabari goat is a novel strain of Pa capable of producing large quantity of PVD type 2 in specially designed BUP medium under aerobic condition, and that its clinical and industrial implications remain elusive.展开更多
In this paper, using fixed theorem in cones, the authors obtain the existence of multiple positive solutions on the following boundary value problem u"+a(t)f(u)=0,t∈[0,1],u(0)=0,au(η)^*=u(1).
文摘This study explored the utility of flours of rubber seed, coconut and groundnut kernels, and de-oiled cakes of coconut and groundnut as solid substrate for the production of lipase by Pseudomonas aeruginosa strain BUP2 (MTCC No. 5924), a novel bacterium reported from the rumen of Malabari goat. Various proportions (10%, 20%, 30%, 40% or 50%) of flours or cakes were prepared (w/v) with BUP medium (pH 4, 5, 6, 7 or 8), and incubated at different temperature (25°C, 28°C, 30°C or 32°C) for 24 to 96 h. The samples were assayed for lipase activity at 24 h intervals. The rubber seed flour (20%)-BUP medium supported the maximum lipase production (871 U/gds) at 48h incubation (pH 6, 28°C), followed by ground nut flour (398 U/gds), while ground nut cake supported the least lipase production (244 U/gds). From this, it is evident that the cheaply available rubber seed is an efficient substrate for the production of lipase, irrespective of its known demerit that it contains the limarin, a toxin;in fact, we could not detect limarin in the fermented matter. Thus, the utility of rubber seed for the production of a costly enzyme is reported from a novel rumen bacterium, which would be advantageous for rubber farmers.
文摘This study focuses on the isolation and characterization of a novel strain of siderophore producing bacterium, i.e., Pseudomonas aeruginosa BUP2 (Pa BUP2) from the rumen of Malabari goat, coupled with qualitative and quantitative analyses of the siderophore produced by it. Pa BUP2—a facultative anaerobe was tuned to be an aerobe by repeatedly growing in Benjamin flask. The new isolate was grown in a specially designed semi-synthetic medium, designated as BUP medium, and the yellowish-green pigment produced was identified as a typical siderophore by spectrophotometry, Chromazurol-S assay, thin layer chromatography and isolectric focusing (IEF). The characteristic orange fluorescence upon UV irradiation on chromatogram and absorption maximum at λ404 confirmed that the characteristic siderophore produced by Pa BUP2 was a typical pyoverdine (PVD). This PVD was further categorized under type 2 by comparing its profile on the IEF gel with that of the representative strains of each PVD types, viz., Pa O1, Pa ATCC 27853 and Pa6. Moreover, the type 2 PVD was purified by XAD-4 Amberlite column chromatography and quantified;maximum yield (11.17 mg/ml) was observed on day 4 of incubation (37°C). Thus, it was confirmed that the bacterium isolated from the rumen content of Malabari goat is a novel strain of Pa capable of producing large quantity of PVD type 2 in specially designed BUP medium under aerobic condition, and that its clinical and industrial implications remain elusive.
基金the Natural Science Foundation of China(10271095)
文摘In this paper, using fixed theorem in cones, the authors obtain the existence of multiple positive solutions on the following boundary value problem u"+a(t)f(u)=0,t∈[0,1],u(0)=0,au(η)^*=u(1).