We are concerned with the uniqueness of solutions of the Cauchy problemand a(s),b(s) are appropriately smooth.Since a(s) is allowed to have zero points, we call them points of degeneracy of (1), the equation (1) does ...We are concerned with the uniqueness of solutions of the Cauchy problemand a(s),b(s) are appropriately smooth.Since a(s) is allowed to have zero points, we call them points of degeneracy of (1), the equation (1) does not admit classical solutions in general. The solutions of (1) even might be discontinuous, whenever the set E = {s : a(s) = 0} includes interior points.Equations with degeneracy arise from a wide variety of diffusive processes in nature展开更多
基金Partially supported by NSF (19631050) of China, partially supported by the grant of Ministry of Science and Technologies of China, and partially supported by the Outstanding Young Fundation (19125107) of China.
文摘We are concerned with the uniqueness of solutions of the Cauchy problemand a(s),b(s) are appropriately smooth.Since a(s) is allowed to have zero points, we call them points of degeneracy of (1), the equation (1) does not admit classical solutions in general. The solutions of (1) even might be discontinuous, whenever the set E = {s : a(s) = 0} includes interior points.Equations with degeneracy arise from a wide variety of diffusive processes in nature