Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc...Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.展开更多
The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydroc...The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydrocarbon charging events.The hydrocarbon migration and accumulation process of“early oil and late gas”has occurred in the current reservoirs.At the end of the sedimentation of the Guantao Formation(N_(1)g,∼12 Ma),the reservoirs began to fill with first stage low-moderate mature crude oil.At the late stage of the Lower Minghuazhen Formation(N_(1)ml)(∼6.7 Ma),the reservoirs were largely charged with second stage high mature crude oil.Since the deposition of the upper Minghuazhen Formation(N_(2)m^(u),∼5.1 Ma),the paleo-oil reservoirs were transformed into shallow Neogene reservoirs due to the reactivation of basement faults.From the late stage of the N_(2)m^(u)to the present day(∼2.8–0 Ma),the reservoirs were rapidly filled by natural gas within a short period.In addition,analysis of the formation of the reservoir bitumen and the conspicuous loss of the lower molecular weight n-alkanes in the crude oil reveal that the injection of a large amount of gas in the late stage caused gas flushing of the early charged oil.展开更多
基金funded by Science and Technology Major Project of China National Offshore Oil Corporation(CNOOC-KJ 135 ZDXM36 TJ 08TJ).
文摘Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.
基金supported by the National Science&Technology Specific Project,China(No.2016ZX05024-003-008).
文摘The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydrocarbon charging events.The hydrocarbon migration and accumulation process of“early oil and late gas”has occurred in the current reservoirs.At the end of the sedimentation of the Guantao Formation(N_(1)g,∼12 Ma),the reservoirs began to fill with first stage low-moderate mature crude oil.At the late stage of the Lower Minghuazhen Formation(N_(1)ml)(∼6.7 Ma),the reservoirs were largely charged with second stage high mature crude oil.Since the deposition of the upper Minghuazhen Formation(N_(2)m^(u),∼5.1 Ma),the paleo-oil reservoirs were transformed into shallow Neogene reservoirs due to the reactivation of basement faults.From the late stage of the N_(2)m^(u)to the present day(∼2.8–0 Ma),the reservoirs were rapidly filled by natural gas within a short period.In addition,analysis of the formation of the reservoir bitumen and the conspicuous loss of the lower molecular weight n-alkanes in the crude oil reveal that the injection of a large amount of gas in the late stage caused gas flushing of the early charged oil.