Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spe...Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spectroscopic ellipsometry (SE) in the UV–Vis–NIR region. By fitting the measured ellipsometric parameter (Ψ and Δ) with a four-phase model (air/BMT+voids/BMT/Si(111)), the key optical constants of the thin films have been obtained. It was found that the refractive index n and the extinction coefficient k increase with increasing Mn content due to the increase in the packing density. Furthermore, a strong dependence of the optical band gap Eg on Mn/Ti ratios in the deposited films was observed, and it was inferred that the energy level of conduction bands decreases with increasing Mn content.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.60976016)the Postdoctoral Science Foundation of China(Grant No.2012M511250)the Foundation Co-established by Henan Province and the Ministry of Henan University,China(Grant No.SBGJ090503)
文摘Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spectroscopic ellipsometry (SE) in the UV–Vis–NIR region. By fitting the measured ellipsometric parameter (Ψ and Δ) with a four-phase model (air/BMT+voids/BMT/Si(111)), the key optical constants of the thin films have been obtained. It was found that the refractive index n and the extinction coefficient k increase with increasing Mn content due to the increase in the packing density. Furthermore, a strong dependence of the optical band gap Eg on Mn/Ti ratios in the deposited films was observed, and it was inferred that the energy level of conduction bands decreases with increasing Mn content.