Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen...Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen-Cooper-Schrieffer?equations (GBCSEs) for the gaps (Δs) and critical temperatures (Tcs) of both elemental and composite SCs. The μ-dependent interaction parameters consistent with the values of Δs and Tcs of any of these SCs were shown to lead to expressions for the effective mass of electrons (m*) and their number density (ns), critical velocity (v0), and the critical current density j0 at T = 0 in terms of the following five parameters: Debye temperature, EF, a dimensionless construct y, the specific heat constant, and the gram-atomic volume. We could then fix the value of μ in any SC by appealing to the experimental value of its j0 and calculate the other parameters. This approach was followed for a variety of SCs—elemental, MgB2 and cuprates and, with a more accurate equation to determine y, for Nitrogen Nitride (NbN). Employing the framework given for NbN, we present here a detailed study of Ba0.6K0.4Fe2As2 (BaAs). Some of the main attributes of this SC are: it is characterized by?-wave superconductivity and multiple gaps between 0?-?12 meV;its Tc ~?37 K, but the maximum Tc of SCs in its class can exceed 50 K;EF/kTc = 4.4 (k = Boltzmann constant), and its Tc plotted against a tuning variable has a dome-like structure. After drawing attention to the fact that the?-wave is an inbuilt feature of GBCSEs, we give a quantitative account of its several other features, which include the values of m*, ns, vo, and?coherence length. Finally, we also deal with the issue of the stage BaAs occupies in the BCS-Bose-Einstein Condensation crossover.展开更多
Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the c...Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the cathode degradation mechanisms. The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide. Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2. Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2. It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.展开更多
Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage curre...Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.展开更多
文摘Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen-Cooper-Schrieffer?equations (GBCSEs) for the gaps (Δs) and critical temperatures (Tcs) of both elemental and composite SCs. The μ-dependent interaction parameters consistent with the values of Δs and Tcs of any of these SCs were shown to lead to expressions for the effective mass of electrons (m*) and their number density (ns), critical velocity (v0), and the critical current density j0 at T = 0 in terms of the following five parameters: Debye temperature, EF, a dimensionless construct y, the specific heat constant, and the gram-atomic volume. We could then fix the value of μ in any SC by appealing to the experimental value of its j0 and calculate the other parameters. This approach was followed for a variety of SCs—elemental, MgB2 and cuprates and, with a more accurate equation to determine y, for Nitrogen Nitride (NbN). Employing the framework given for NbN, we present here a detailed study of Ba0.6K0.4Fe2As2 (BaAs). Some of the main attributes of this SC are: it is characterized by?-wave superconductivity and multiple gaps between 0?-?12 meV;its Tc ~?37 K, but the maximum Tc of SCs in its class can exceed 50 K;EF/kTc = 4.4 (k = Boltzmann constant), and its Tc plotted against a tuning variable has a dome-like structure. After drawing attention to the fact that the?-wave is an inbuilt feature of GBCSEs, we give a quantitative account of its several other features, which include the values of m*, ns, vo, and?coherence length. Finally, we also deal with the issue of the stage BaAs occupies in the BCS-Bose-Einstein Condensation crossover.
基金Supported by the National Natural Science Foundation of China(No.50872041)the Research Funds of Industrial Technology Research and Development Projects of Jilin Province, China(No.JF2012C024)+1 种基金the Natural Science Foundation of Jilin Province,China(No.201215109)the Science and Technology Research Projects of Education Department of Jilin Province, China(No.2011205)
文摘Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the cathode degradation mechanisms. The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide. Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2. Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2. It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.
基金Project supported by the Foundation of the Education Commission of Shanghai Municipality (Grant Nos.07ZZ14, 08SG41)the National Natural Science Foundation of China (Grant No.50711130241)the Shanghai Rising Star Program (GrantNo.08QH14008)
文摘Ba0.6Sr0.4TiO3 (BST) thin films with and without HfO 2 buffer layer were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Dependences of HfO 2 thickness on the dielectric property and leakage current of BST thin films were focused. The dielectric constant of BST thin films increased and then decreased with the increase of HfO 2 thickness, while the dielectric relaxation was gradually improved. The loss tangent and leakage current under positive bias decreased with the HfO 2 thickness increasing. The leakage current analysis based on the Schottky emission indicated an improvement of the BST/Pt interface with HfO 2 buffer layer. The loss tangent, tunability and figure of merit of optimized HfO 2 buffered BST thin film achieved 0.009 8, 21.91% (E max = 200 kV/cm), 22.40 at 10 6 Hz, respectively.