期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ionic Conduction and Application of Ba1.03Ce0.8Tm0.2O3-a Ceramic
1
作者 仇立干 王茂元 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第4期698-702,共5页
BaBa1.03Ce0.8Tm0.2O3-aceramic with orthorhombic perovskite structure was prepared by conventional solid-state reaction. The conductivity and ionic transport number of BaBa1.03Ce0.8Tm0.2O3-a a were measured by ac imped... BaBa1.03Ce0.8Tm0.2O3-aceramic with orthorhombic perovskite structure was prepared by conventional solid-state reaction. The conductivity and ionic transport number of BaBa1.03Ce0.8Tm0.2O3-a a were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 500-900 ℃ in wet hydrogen and wet air. Using the ceramic as solid electrolyte and porous platinum as electrodes, the hydrogen-air fuel cell was constructed, and the cell performance was examined at 500-900℃. The results indicate that the specimen is a pure ionic conductor with the ionic transport number of 1 at 500-900 ℃ in wet hydrogen. In wet air, the specimen is a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers are 0.071-0.018, and the oxide ionic transport numbers are 0.273-0.365. The conductivities of Bal.03Ceo.sTmo.203 a under wet hydrogen, wet air or fuel cell atmosphere are higher than those of BaBa1.03Ce0.8Tm0.2O3-a a (RE=Y, Eu, Ho) reported previously by us. The fuel cell can work stably. At 900℃ the maximum power output density is 122.7 mWocm 2, which is higher than that of our previous cell using BaBa1.03Ce0.8Tm0.2O3-a(RE=Y, Eu, Ho) as electrolyte. 展开更多
关键词 baba1.03ce0.8tm0.2o3-a ionic conductor ac impedance gas concentration cell fuel cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部