Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature hi...Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.展开更多
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent ...As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.展开更多
The Y-Eu oxalate precursor was prepared with a homogeneous precipitation method. And the additives, Na2CO3, S, NaCl or their combination, were introduced into the precursor to prepare Y2O3 :Eu^3+ red phosphors at 10...The Y-Eu oxalate precursor was prepared with a homogeneous precipitation method. And the additives, Na2CO3, S, NaCl or their combination, were introduced into the precursor to prepare Y2O3 :Eu^3+ red phosphors at 1000 1300 ℃ for 2 h. The effect of molten salts on particle size and luminescent intensity was studied. The experimental results showed that the complex molten salt (Na:CO3 + S + NaCl) was conductive to enhance the luminescent intensity of Y2O3 :Eu^3+. The emission intensity of the phosphor prepared with these additives at 1300 ℃ was about 45% higher than that of the one prepared without molten salt, and about 11% higher than that of the corresponding commercial phosphor. Meanwhile, the particle size of Y2O3 :Eu^3+ phosphor was controlled effectively with the molten salt.展开更多
Single phase of Ba1-x MgAl10O17 : x Eu^2+ (0.02≤ x ≤ 0. 14) phosphors was first successfully prepared by coprecipitation in aqueous medium with a “reverse strike” method, using oxalic acid and ammonia together...Single phase of Ba1-x MgAl10O17 : x Eu^2+ (0.02≤ x ≤ 0. 14) phosphors was first successfully prepared by coprecipitation in aqueous medium with a “reverse strike” method, using oxalic acid and ammonia together as precipitants. Completely crystallized phosphors were obtained at 1300 ℃, which is 300 ℃ lower than the temperature of solid-state reaction. Their photoluminescence was investigated under UV and VUV region, respectively. The emission spectra of Ba1-x MgAl10O17:xEu^2+ samples excited by 254 or 147 nm showed a characteristic wide band with the peak centred at about 450 454 nm. Optimum emission intensity reached at x = 0.1 and then concentration quenching occurred. The synthesized phosphor shows 10% higher emission intensity than that prepared by solid-state reaction.展开更多
The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and stro...The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.展开更多
To discuss the function of Eu and Dy and their interaction in Sr2 Mg Si2O7:Eu^2+,Dy^3+ long afterglow material,the Eu and Dy single doped and their co-doped Sr2 Mg Si2O7:Eu^2+,Dy^3+ were prepared.The samples wer...To discuss the function of Eu and Dy and their interaction in Sr2 Mg Si2O7:Eu^2+,Dy^3+ long afterglow material,the Eu and Dy single doped and their co-doped Sr2 Mg Si2O7:Eu^2+,Dy^3+ were prepared.The samples were characterized by X-ray diffraction(XRD),decay curves,photoluminescence(PL),and thermoluminescence(TL).The results indicate that Sr2 Mg Si2O7:Eu has afterglow properties,and the doping of Eu ion in Sr2 Mg Si2O7:Eu^2+,Dy^3+ can lower the depth of traps.Eu ion can not only serve as luminescence center,but also produce traps in the matrix,meanwhile,it also exerts certain influences on the traps produced by Dy in Sr2 Mg Si2O7:Eu^2+,Dy^3+.The Dy ion can not act as luminescence center but relates to the change of the traps in the Sr2 Mg Si2O7 matrix.展开更多
The green-emitting phosphor BaSi2O5 :Eu^2+ was synthesized by the conventional solid state reaction. Using the CASTEP code, BaSi2O5 is calculated to be an intermediate band gap semiconductor with an indirect energy ...The green-emitting phosphor BaSi2O5 :Eu^2+ was synthesized by the conventional solid state reaction. Using the CASTEP code, BaSi2O5 is calculated to be an intermediate band gap semiconductor with an indirect energy gap of about 3.2 eV. As expected, the calculated optical band gap of BaSi2O5 is lower compared to the experimentally determined values. Eu^2+-activated BaSi2O5 phosphor can be excited efficiently over a broad spectral range between 200 and 400 nm, and has an emission peak at 500 nm with a full width at half maximum of 95 nm. The study of concentration-dependent emission intensity shows the optimal concentration of the Eu^2+ is 0.05 mol, and that concentration quenching occurs when the Eu^2+ content is beyond the critical value. The external quantum efficiency of the optimized BaSi2O5 :Eu^2+ is 96. 1%, 70.2% and 62.1% under excitation at 315,350 and 365 nm, respectively. The superior optical properties of the sample show the potential as an ultraviolet converting green-emitting phosphor for white light emitting diodes.展开更多
Eu^2+ activated BaSi2 O2 N2 oxynitride bluish-green phosphor was synthesized adopting conventional high-temperature solid-state reaction method, in which BaF2, Na2 CO3 and NH4 Cl were used as the fluxes.The phase for...Eu^2+ activated BaSi2 O2 N2 oxynitride bluish-green phosphor was synthesized adopting conventional high-temperature solid-state reaction method, in which BaF2, Na2 CO3 and NH4 Cl were used as the fluxes.The phase formation, size distribution and microscopic morphology were characterized to investigate the influence of adding fluxes on photo luminescence properties. The results indicate that with the addition of BaF2 flux, the particle morphology becomes regular and size distribution narrows and the phase purity of BaSi2 O2 N2:Eu^2+ phosphor can be improved effectively. The photoluminescence intensity of BaSi2 O2 N2:Eu^2+ phosphor with BaF2 as flux gets enhanced obviously, which is much higher than that of Na2 CO3, NH4 Cl and without flux. The optimum content of BaF2 flux is 4 wt%, and the maximum photoluminescence intensity of the BaSi2 O2 N2:Eu^2+ phosphor prepared with BaF2 flux rises to 141%,meanwhile, the phosphors with BaF2 flux exhibits low thermal quenching. The results indicate that the BaSi2 O2 N2:Eu^2+ is sort of promising bluish-green phosphor for application in full-spectra LED.展开更多
A flower-like Eu^2+ and Dy^3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of t...A flower-like Eu^2+ and Dy^3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of the composite were characterized. X-ray diffraction diffusion (XRD) data and DSC-TG curves of the phosphor revealed that the SrAl2O4 crystallites have been formed after the precursor was calcined at 900 ℃ and to be single-phase SrA1204 at 1100 ℃. The SEM photographs indicated that the sample exhibited a universal flower-like morphology with crystallite size of about l-2μm. After being irradiated with ultraviolet (UV) light, the flower-like phosphor emitted long-lasting green phosphorescence with an excitation peak at 365 nm and emission peak at 500 nm which was ascribed to the characteristic 5d-4f transition of Eu^2+. Both the PL spectra and the luminance decay curve revealed that this phosphor exhibited efficient luminescence and long lasting properties.展开更多
A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adj...A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adjusting pH value of the system. The morphologies of precursor were characterized by transmission electron microscope (TEM). The structure and optical properties of the phosphor powders were systematically investigated by means of X-ray diffraction and spectrofluorometry. TEM images have reflected the core-shell structure and quasi-spherical morphology of the precursor particles. It was found that the single-phase Sr3MgSi2O8 crystalline structures were obtained at 1050 and 1250 ℃ for the samples prepared with the nano-coating method and the solid state reaction, respectively. The emission intensities of the phosphors prepared by the present method were higher than those by the conventional process. Also, the afterglow characteristic was better than that prepared by solid-state reaction in the comparable condition.展开更多
The mechanisms of thermal,ultraviolet and vacuum ultraviolet radiation degradation behaviors of the Eu2+,Mn2+ co-doped BaMgAl10O17 phosphors were investigated comparatively.The result indicated that the Mn2+ ions whic...The mechanisms of thermal,ultraviolet and vacuum ultraviolet radiation degradation behaviors of the Eu2+,Mn2+ co-doped BaMgAl10O17 phosphors were investigated comparatively.The result indicated that the Mn2+ ions which replaced the Mg2+ sites in the sample were stable and negligibly influenced by treatments.The oxidation and migration of Eu2+ ions primarily caused the thermal degradation of the sample.The vacuum ultraviolet radiation degradation was primarily because of the migration of Eu2+.The ultraviolet radiation increased traps which trended the Eu2+r to be in a metastable state,leading to the ultraviolet radiation degradation of the sample.The vacuum ultraviolet excited luminous loss of samples after ultraviolet radiation partly originated from the interruption of energy transfer from the host to activators by traps.展开更多
The color conversion glass ceramics which were made of borosilicate matrix co-doped(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence propert...The color conversion glass ceramics which were made of borosilicate matrix co-doped(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence properties and the drift of chromaticity coordinates(CIE) of the(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors and the color conversion glass ceramics were studied in the sintering temperature range from 600℃ to 800℃. The luminous intensity and internal quantum yield(QY) of the blue-green phosphors and glass ceramics decreased with the sintering temperature increasing. When the sintering temperature increased beyond 750℃, the phosphors and the color conversion glass ceramics almost had no peak in photoluminescence(PL) and excitation(PLE) spectra. The results showed that the blue-green phosphors had poor thermal stability at higher temperature. The lattice structure of the phosphors was destroyed by the glass matrix and the Ce^3+ in the phosphors was oxidized to Ce^4+, which further caused a decrease in luminescent properties of the color conversion glass ceramics.展开更多
文摘Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.
基金Supported by the Project of the Combination of Industry and Research by the Ministry of Education of China and Guang-dong Province, China(No.0712226100023)
文摘As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.
基金Project supported by the National Natural Science Foundation of China (50372086)the Ministry of Science and Technology of Chi-na (2006CB601104)
文摘The Y-Eu oxalate precursor was prepared with a homogeneous precipitation method. And the additives, Na2CO3, S, NaCl or their combination, were introduced into the precursor to prepare Y2O3 :Eu^3+ red phosphors at 1000 1300 ℃ for 2 h. The effect of molten salts on particle size and luminescent intensity was studied. The experimental results showed that the complex molten salt (Na:CO3 + S + NaCl) was conductive to enhance the luminescent intensity of Y2O3 :Eu^3+. The emission intensity of the phosphor prepared with these additives at 1300 ℃ was about 45% higher than that of the one prepared without molten salt, and about 11% higher than that of the corresponding commercial phosphor. Meanwhile, the particle size of Y2O3 :Eu^3+ phosphor was controlled effectively with the molten salt.
基金Project supported bythe National Natural Science Foundation of China (50272026) ,the Excellent Young Teachers ProgramofMOE,China (EYTP) and the Natural Science Foundation of Gansu Province (ZS031-A25-033-C)
文摘Single phase of Ba1-x MgAl10O17 : x Eu^2+ (0.02≤ x ≤ 0. 14) phosphors was first successfully prepared by coprecipitation in aqueous medium with a “reverse strike” method, using oxalic acid and ammonia together as precipitants. Completely crystallized phosphors were obtained at 1300 ℃, which is 300 ℃ lower than the temperature of solid-state reaction. Their photoluminescence was investigated under UV and VUV region, respectively. The emission spectra of Ba1-x MgAl10O17:xEu^2+ samples excited by 254 or 147 nm showed a characteristic wide band with the peak centred at about 450 454 nm. Optimum emission intensity reached at x = 0.1 and then concentration quenching occurred. The synthesized phosphor shows 10% higher emission intensity than that prepared by solid-state reaction.
基金the Program for New Century Talents in the University of China (NCET, 04-0978)the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20040730019)
文摘The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.
文摘采用高温固相反应法制备了Sr_(1-x)Ca_xSi_2O_2N_2∶Eu^(2+)系列荧光粉,研究Y^(3+)离子掺入对荧光粉发光性能的影响。对于Sr Si_2O_2N_2∶Eu^(2+),Y^(3+)离子掺入主要起到稳定Eu^(2+)价态的作用,避免Eu^(2+)氧化为Eu^(3+),从而提高Sr Si_2O_2N_2∶Eu^(2+)的发光性能。对于Ca Sr Si_2O_2N_2∶Eu^(2+),Y^(3+)离子掺入除了稳定Eu^(2+)价态作用外,还能有效减小Eu^(2+)取代Ca^(2+)后晶格膨胀引起的应力,提高Eu^(2+)在晶格中的溶解度。Sr_(1-x)Ca_xSi_2O_2N_2∶Eu^(2+)(x=0,0.15,0.3,0.6,0.75,0.95)系列荧光粉中随着Ca含量的增加,共掺Y^(3+)离子对样品发光强度的提高程度也随之增加(20%~80%)。
文摘To discuss the function of Eu and Dy and their interaction in Sr2 Mg Si2O7:Eu^2+,Dy^3+ long afterglow material,the Eu and Dy single doped and their co-doped Sr2 Mg Si2O7:Eu^2+,Dy^3+ were prepared.The samples were characterized by X-ray diffraction(XRD),decay curves,photoluminescence(PL),and thermoluminescence(TL).The results indicate that Sr2 Mg Si2O7:Eu has afterglow properties,and the doping of Eu ion in Sr2 Mg Si2O7:Eu^2+,Dy^3+ can lower the depth of traps.Eu ion can not only serve as luminescence center,but also produce traps in the matrix,meanwhile,it also exerts certain influences on the traps produced by Dy in Sr2 Mg Si2O7:Eu^2+,Dy^3+.The Dy ion can not act as luminescence center but relates to the change of the traps in the Sr2 Mg Si2O7 matrix.
文摘The green-emitting phosphor BaSi2O5 :Eu^2+ was synthesized by the conventional solid state reaction. Using the CASTEP code, BaSi2O5 is calculated to be an intermediate band gap semiconductor with an indirect energy gap of about 3.2 eV. As expected, the calculated optical band gap of BaSi2O5 is lower compared to the experimentally determined values. Eu^2+-activated BaSi2O5 phosphor can be excited efficiently over a broad spectral range between 200 and 400 nm, and has an emission peak at 500 nm with a full width at half maximum of 95 nm. The study of concentration-dependent emission intensity shows the optimal concentration of the Eu^2+ is 0.05 mol, and that concentration quenching occurs when the Eu^2+ content is beyond the critical value. The external quantum efficiency of the optimized BaSi2O5 :Eu^2+ is 96. 1%, 70.2% and 62.1% under excitation at 315,350 and 365 nm, respectively. The superior optical properties of the sample show the potential as an ultraviolet converting green-emitting phosphor for white light emitting diodes.
基金Project supported by the National Key Research and Development Program of China(2016YFB0701003)
文摘Eu^2+ activated BaSi2 O2 N2 oxynitride bluish-green phosphor was synthesized adopting conventional high-temperature solid-state reaction method, in which BaF2, Na2 CO3 and NH4 Cl were used as the fluxes.The phase formation, size distribution and microscopic morphology were characterized to investigate the influence of adding fluxes on photo luminescence properties. The results indicate that with the addition of BaF2 flux, the particle morphology becomes regular and size distribution narrows and the phase purity of BaSi2 O2 N2:Eu^2+ phosphor can be improved effectively. The photoluminescence intensity of BaSi2 O2 N2:Eu^2+ phosphor with BaF2 as flux gets enhanced obviously, which is much higher than that of Na2 CO3, NH4 Cl and without flux. The optimum content of BaF2 flux is 4 wt%, and the maximum photoluminescence intensity of the BaSi2 O2 N2:Eu^2+ phosphor prepared with BaF2 flux rises to 141%,meanwhile, the phosphors with BaF2 flux exhibits low thermal quenching. The results indicate that the BaSi2 O2 N2:Eu^2+ is sort of promising bluish-green phosphor for application in full-spectra LED.
基金Project supported by the National Natural Science Foundation of China (20671042,50872045)Natural Science Foundation of Guangdong Province (05200555,7005918)
文摘A flower-like Eu^2+ and Dy^3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of the composite were characterized. X-ray diffraction diffusion (XRD) data and DSC-TG curves of the phosphor revealed that the SrAl2O4 crystallites have been formed after the precursor was calcined at 900 ℃ and to be single-phase SrA1204 at 1100 ℃. The SEM photographs indicated that the sample exhibited a universal flower-like morphology with crystallite size of about l-2μm. After being irradiated with ultraviolet (UV) light, the flower-like phosphor emitted long-lasting green phosphorescence with an excitation peak at 365 nm and emission peak at 500 nm which was ascribed to the characteristic 5d-4f transition of Eu^2+. Both the PL spectra and the luminance decay curve revealed that this phosphor exhibited efficient luminescence and long lasting properties.
基金Project supported by the National Natural Science Foundation (No. 20376009) and the Liaoning Natural Science Foundation (No. 20032129) of China.
文摘A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adjusting pH value of the system. The morphologies of precursor were characterized by transmission electron microscope (TEM). The structure and optical properties of the phosphor powders were systematically investigated by means of X-ray diffraction and spectrofluorometry. TEM images have reflected the core-shell structure and quasi-spherical morphology of the precursor particles. It was found that the single-phase Sr3MgSi2O8 crystalline structures were obtained at 1050 and 1250 ℃ for the samples prepared with the nano-coating method and the solid state reaction, respectively. The emission intensities of the phosphors prepared by the present method were higher than those by the conventional process. Also, the afterglow characteristic was better than that prepared by solid-state reaction in the comparable condition.
基金supported by the National Natural Science Young Foundation of China(Grant No.10904057)the Fundamental Research Funds for the Central Universities(Grant No.Lzjbky-2011-125)+1 种基金the National Science Foundation for Distinguished Young Scholars(Grant No.50925206)the National Natural Science Foundation of China(Grant No. 10874061)
文摘The mechanisms of thermal,ultraviolet and vacuum ultraviolet radiation degradation behaviors of the Eu2+,Mn2+ co-doped BaMgAl10O17 phosphors were investigated comparatively.The result indicated that the Mn2+ ions which replaced the Mg2+ sites in the sample were stable and negligibly influenced by treatments.The oxidation and migration of Eu2+ ions primarily caused the thermal degradation of the sample.The vacuum ultraviolet radiation degradation was primarily because of the migration of Eu2+.The ultraviolet radiation increased traps which trended the Eu2+r to be in a metastable state,leading to the ultraviolet radiation degradation of the sample.The vacuum ultraviolet excited luminous loss of samples after ultraviolet radiation partly originated from the interruption of energy transfer from the host to activators by traps.
基金Project supported by the Science and Technology Planning Project of Zhejiang Province,China(Grant No.2018C01046)Enterprise-funded Latitudinal Research Projects,China(Grant Nos.J2016-141,J2017-171,J2017-293,and J2017-243)
文摘The color conversion glass ceramics which were made of borosilicate matrix co-doped(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence properties and the drift of chromaticity coordinates(CIE) of the(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors and the color conversion glass ceramics were studied in the sintering temperature range from 600℃ to 800℃. The luminous intensity and internal quantum yield(QY) of the blue-green phosphors and glass ceramics decreased with the sintering temperature increasing. When the sintering temperature increased beyond 750℃, the phosphors and the color conversion glass ceramics almost had no peak in photoluminescence(PL) and excitation(PLE) spectra. The results showed that the blue-green phosphors had poor thermal stability at higher temperature. The lattice structure of the phosphors was destroyed by the glass matrix and the Ce^3+ in the phosphors was oxidized to Ce^4+, which further caused a decrease in luminescent properties of the color conversion glass ceramics.