BSTO dielectric ceramic was prepared from SrTi03 and BaTi03 powders synthesized by hydrothermal method, as well as from Bao.sSro.4TiO3 powder synthesized by conventional solid-state reaction. The former can be sintere...BSTO dielectric ceramic was prepared from SrTi03 and BaTi03 powders synthesized by hydrothermal method, as well as from Bao.sSro.4TiO3 powder synthesized by conventional solid-state reaction. The former can be sintered at a relatively low temperature of 1120 ℃. Characterization by SEM showed that the grain shapes of both ceramics are cubical, though the grain size of the former is much smaller. Dielectric constants measured at 20℃ were shown to vary with frequency in the range from I kHz to 2 MHz and dc bias field, and further that the dielectric loss of the former to be less than 2 × 10^- 3 in the frequency range of 20 kHz to 1 MHz, much smaller than that of the latter sample. For the former, temperature dependence of dielectric constant is much flatter and there exists an extended phase transition diffusion covering a wide temperature range of Curie temperature To. The smaller grain size of the former depresses the dc bias electrical field dependence of dielectric constant. The tunability is 7% under a bias field of 0.6 kV/mm dc.展开更多
We have performed first principles calculations of Fe-doped BaTiO3 and SrTiO3. Dopant formation energy, structure distortion, band structure and density of states have been computed. The dopant formation energy is fou...We have performed first principles calculations of Fe-doped BaTiO3 and SrTiO3. Dopant formation energy, structure distortion, band structure and density of states have been computed. The dopant formation energy is found to be 6.8eV and 6.5eV for Fe-doped BaTiO3 and SrTiO3 respectively. The distances between Fe impurity and its nearest O atoms and between Fe atom and Ba or Sr atoms are smaller than those of the corresponding undoped bulk systems. The Fe defect energy band is obtained, which mainly originates from Fe 3d electrons. The band gap is still an indirect one after Fe doping for both BaTiO3 and SrWiO3, but the gap changes from Γ-R point to Γ-X point.展开更多
基金support from the Shan-dong Sinocera Functional Material Co., Ltd
文摘BSTO dielectric ceramic was prepared from SrTi03 and BaTi03 powders synthesized by hydrothermal method, as well as from Bao.sSro.4TiO3 powder synthesized by conventional solid-state reaction. The former can be sintered at a relatively low temperature of 1120 ℃. Characterization by SEM showed that the grain shapes of both ceramics are cubical, though the grain size of the former is much smaller. Dielectric constants measured at 20℃ were shown to vary with frequency in the range from I kHz to 2 MHz and dc bias field, and further that the dielectric loss of the former to be less than 2 × 10^- 3 in the frequency range of 20 kHz to 1 MHz, much smaller than that of the latter sample. For the former, temperature dependence of dielectric constant is much flatter and there exists an extended phase transition diffusion covering a wide temperature range of Curie temperature To. The smaller grain size of the former depresses the dc bias electrical field dependence of dielectric constant. The tunability is 7% under a bias field of 0.6 kV/mm dc.
文摘We have performed first principles calculations of Fe-doped BaTiO3 and SrTiO3. Dopant formation energy, structure distortion, band structure and density of states have been computed. The dopant formation energy is found to be 6.8eV and 6.5eV for Fe-doped BaTiO3 and SrTiO3 respectively. The distances between Fe impurity and its nearest O atoms and between Fe atom and Ba or Sr atoms are smaller than those of the corresponding undoped bulk systems. The Fe defect energy band is obtained, which mainly originates from Fe 3d electrons. The band gap is still an indirect one after Fe doping for both BaTiO3 and SrWiO3, but the gap changes from Γ-R point to Γ-X point.