To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-dop...To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
Dense nanocrystalline BaTiO3 ceramics with a homogeneous grain size of 30 nm was obtained by pressure assisted sintering. The ferroelectric behaviour of the ceramics was characterized by the dielectric peak at around ...Dense nanocrystalline BaTiO3 ceramics with a homogeneous grain size of 30 nm was obtained by pressure assisted sintering. The ferroelectric behaviour of the ceramics was characterized by the dielectric peak at around 120 ℃, the P-E hysteresis loop and some ferroelectric domains. These experimental results indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm. The ferroelectric property decreasing with decreasing grain size can be explained by the lowered tetragonality and the 'dilution' effect of grain boundaries.展开更多
Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions.We proposed a novel strategy to improve the purification performance of Al_(2)O_(3)-based ceramic fi...Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions.We proposed a novel strategy to improve the purification performance of Al_(2)O_(3)-based ceramic filters by using microporous corundum-spinel raw materials to replace dense raw materials.Three kinds of Al_(2)O_(3)-based ceramic filters fabricated from dense α-Al_(2)O_(3) micro-powder or microporous corundum-spinel powder were selected to carry out the immersion tests with molten steel.On the one hand,the higher surface roughness of the filter skeleton prepared from microporous raw materials increased the adsorption capacity of skeleton surface on inclusions in molten steel.On the other hand,the higher apparent porosity and larger pore size of the filter skeleton were more beneficial to the penetration of molten steel in the micropores of skeleton.The reaction process at the solid-liquid interface also improved the wettability of the interface between skeleton and molten steel,resulting in a larger penetration depth and a better adsorption effect on the inclusions.In summary,the novel Al_(2)O_(3)-based ceramic filter prepared with microporous corundum-spinel powder and addition of 5 wt.% nano-Al_(2)O_(3) powder reduced the total oxygen content of the steel from 40.2×10^(-4) to 12.7×10^(-4) wt.% by 68.4% and the Al content from 0.46 to 0.18 wt.% by 60.9% after immersion test,presenting the most excellent purification performance on molten steel.展开更多
Barium titanate, BaTiO3 (BTO) is the most common ferro electric material, which is used to manufacture electronic components such as multilayer capacitors, positive temperature coefficient thermistors, piezo electric ...Barium titanate, BaTiO3 (BTO) is the most common ferro electric material, which is used to manufacture electronic components such as multilayer capacitors, positive temperature coefficient thermistors, piezo electric transdures, and ferro electric memory. Zr doped barium magnesium titanate (Ba0.9Mg1.0)(ZrxTi1-x)O3 (with x = 0.10, 0.20, 0.40 (BMZT 10, BMZT 20 and BMZT 40) perovskite is prepared by conventional solid state reaction method. The starting raw materials were BaCO3, TiO2, MgO and ZrO2. The XRD study at room temperature suggests that these have cubic and tetragonal symmetry phases. The behavior of the measured dielectric permittivity and dielectric loss with temperature and frequency reveals that the materials undergo a diffuse para-ferroelectric phase transition and are of the relaxor type. The crystal structure, surface morphology and dielectric properties of Zr and Mg doped barium titanate ceramics were investigated. Zr4+ and Mg2+ ions have entered the unit cell maintaining the perovskite structure of solid solution without the evidence of any additional phase when Mg content is 0.1 mole% and the Zr content is 0.10, 0.20 and 0.40 mole%.展开更多
(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)-based lead-free piezoceramics exhibit excellent electric field-induced strain(electrostrain)properties,but often suffer from large hysteresis and poor fatigue resistance,which strongly l...(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)-based lead-free piezoceramics exhibit excellent electric field-induced strain(electrostrain)properties,but often suffer from large hysteresis and poor fatigue resistance,which strongly limit their applications.Here,<00l>textured Nb5+-doped 0.8(Bi_(0.5)Na_(0.5))TiO_(3)–0.2(Bi_(0.5)K_(0.5))TiO_(3)(0.8BNT–0.2BKT)ceramics with a high degree of texturing(~80%)were prepared by the reactive template grain growth(RTGG)method using Bi4Ti3O12 as a template.By the combination of donor doping in the B-site and the RTGG method,the electrostrain performance achieves a significant enhancement.A high electrostrain of 0.65%and a piezoelectric coefficient(*33 d)of 1083 pm/V with reduced hysteresis at an electric field of 6 kV/mm are obtained.No electrostrain performance degradation is observed after unipolar electric field loading of 10^(5)cycles,showing excellent fatigue endurance.These results indicate that the texturing BNT-based lead-free piezoceramics by the RTGG method is a useful approach to developing eco-friendly actuators.展开更多
High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based...High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics have been investigated.The Bi2O3 ,acting as a sintering additive,can effectively lower the sintering temperature of BaTiO3-based ceramics from 1300 to 1130 °C.The bulk density of BaTiO3-based ceramics increased and reached the maximum value with increasingBi2O3 content.The dielectric constant increased with increasingBi2O3 until it reached the maximum value with 0.8 mol%Bi2O3 additive,and the dielectric loss decreased with increasingBi2O3 content.Optimal dielectric properties of ε=2470,tanδ=0.011 and △ε/ε 25 ≤±9%(-55-150 °C) were obtained for the BaTiO3-based ceramics doped with 0.8 mol%Bi2O3 sintered at 1130 °C for 6 h.展开更多
In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,a...In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,and energy storage properties were performed.The NNBT-0.25CLT ceramic with orthorhombic phase at room temperature was found to exhibit extremely small grain size and compacted microstructure.A large Wrec of 3.1 J/cm^(3) and a highηof 91.5%under the electric field of 360 kV/cm were achieved simultaneously in the sample.In addition,the energy storage performance of the sample exhibits thermal stability over the temperature range of 25-140°C and the frequency range of 5-500 Hz.The charge and discharge tests reveal that the ceramic shows a large current density CD of 965 A/cm2 and power density PD of 154 MW/cm^(3).This work demonstrates that the NNBT-0.25CLT ceramic is a prospective energy storage material for potential application in the field of pulsed power devices.展开更多
基金Project(60661001) supported by the National Natural Science Foundation of China
文摘To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
文摘Dense nanocrystalline BaTiO3 ceramics with a homogeneous grain size of 30 nm was obtained by pressure assisted sintering. The ferroelectric behaviour of the ceramics was characterized by the dielectric peak at around 120 ℃, the P-E hysteresis loop and some ferroelectric domains. These experimental results indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm. The ferroelectric property decreasing with decreasing grain size can be explained by the lowered tetragonality and the 'dilution' effect of grain boundaries.
基金financially supported by the National Natural Science Foundation of China(Grant No.51974214).
文摘Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions.We proposed a novel strategy to improve the purification performance of Al_(2)O_(3)-based ceramic filters by using microporous corundum-spinel raw materials to replace dense raw materials.Three kinds of Al_(2)O_(3)-based ceramic filters fabricated from dense α-Al_(2)O_(3) micro-powder or microporous corundum-spinel powder were selected to carry out the immersion tests with molten steel.On the one hand,the higher surface roughness of the filter skeleton prepared from microporous raw materials increased the adsorption capacity of skeleton surface on inclusions in molten steel.On the other hand,the higher apparent porosity and larger pore size of the filter skeleton were more beneficial to the penetration of molten steel in the micropores of skeleton.The reaction process at the solid-liquid interface also improved the wettability of the interface between skeleton and molten steel,resulting in a larger penetration depth and a better adsorption effect on the inclusions.In summary,the novel Al_(2)O_(3)-based ceramic filter prepared with microporous corundum-spinel powder and addition of 5 wt.% nano-Al_(2)O_(3) powder reduced the total oxygen content of the steel from 40.2×10^(-4) to 12.7×10^(-4) wt.% by 68.4% and the Al content from 0.46 to 0.18 wt.% by 60.9% after immersion test,presenting the most excellent purification performance on molten steel.
文摘Barium titanate, BaTiO3 (BTO) is the most common ferro electric material, which is used to manufacture electronic components such as multilayer capacitors, positive temperature coefficient thermistors, piezo electric transdures, and ferro electric memory. Zr doped barium magnesium titanate (Ba0.9Mg1.0)(ZrxTi1-x)O3 (with x = 0.10, 0.20, 0.40 (BMZT 10, BMZT 20 and BMZT 40) perovskite is prepared by conventional solid state reaction method. The starting raw materials were BaCO3, TiO2, MgO and ZrO2. The XRD study at room temperature suggests that these have cubic and tetragonal symmetry phases. The behavior of the measured dielectric permittivity and dielectric loss with temperature and frequency reveals that the materials undergo a diffuse para-ferroelectric phase transition and are of the relaxor type. The crystal structure, surface morphology and dielectric properties of Zr and Mg doped barium titanate ceramics were investigated. Zr4+ and Mg2+ ions have entered the unit cell maintaining the perovskite structure of solid solution without the evidence of any additional phase when Mg content is 0.1 mole% and the Zr content is 0.10, 0.20 and 0.40 mole%.
基金supported by the National Natural Science Foundation of China(52172135)the Youth Top Talent Project of the National“Ten Thousand Talents Program”(2021-527-07)the Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholars(2021B1515020083 and 2022B1515020070).
文摘(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)-based lead-free piezoceramics exhibit excellent electric field-induced strain(electrostrain)properties,but often suffer from large hysteresis and poor fatigue resistance,which strongly limit their applications.Here,<00l>textured Nb5+-doped 0.8(Bi_(0.5)Na_(0.5))TiO_(3)–0.2(Bi_(0.5)K_(0.5))TiO_(3)(0.8BNT–0.2BKT)ceramics with a high degree of texturing(~80%)were prepared by the reactive template grain growth(RTGG)method using Bi4Ti3O12 as a template.By the combination of donor doping in the B-site and the RTGG method,the electrostrain performance achieves a significant enhancement.A high electrostrain of 0.65%and a piezoelectric coefficient(*33 d)of 1083 pm/V with reduced hysteresis at an electric field of 6 kV/mm are obtained.No electrostrain performance degradation is observed after unipolar electric field loading of 10^(5)cycles,showing excellent fatigue endurance.These results indicate that the texturing BNT-based lead-free piezoceramics by the RTGG method is a useful approach to developing eco-friendly actuators.
基金supported by the Tianjin Natural Science Foundation, China (Grant No. 06YFJMJC01000)
文摘High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics have been investigated.The Bi2O3 ,acting as a sintering additive,can effectively lower the sintering temperature of BaTiO3-based ceramics from 1300 to 1130 °C.The bulk density of BaTiO3-based ceramics increased and reached the maximum value with increasingBi2O3 content.The dielectric constant increased with increasingBi2O3 until it reached the maximum value with 0.8 mol%Bi2O3 additive,and the dielectric loss decreased with increasingBi2O3 content.Optimal dielectric properties of ε=2470,tanδ=0.011 and △ε/ε 25 ≤±9%(-55-150 °C) were obtained for the BaTiO3-based ceramics doped with 0.8 mol%Bi2O3 sintered at 1130 °C for 6 h.
基金supported by the National Natural Science Foundation of China(NSFC)Grants 12174001 and 51872001(C.Wang)NSFC Grant 12104001Anhui Provincial Natural Science Foundation of Grant 2008085QE205(F.Li).
文摘In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,and energy storage properties were performed.The NNBT-0.25CLT ceramic with orthorhombic phase at room temperature was found to exhibit extremely small grain size and compacted microstructure.A large Wrec of 3.1 J/cm^(3) and a highηof 91.5%under the electric field of 360 kV/cm were achieved simultaneously in the sample.In addition,the energy storage performance of the sample exhibits thermal stability over the temperature range of 25-140°C and the frequency range of 5-500 Hz.The charge and discharge tests reveal that the ceramic shows a large current density CD of 965 A/cm2 and power density PD of 154 MW/cm^(3).This work demonstrates that the NNBT-0.25CLT ceramic is a prospective energy storage material for potential application in the field of pulsed power devices.