Nd2O3 doped BaTiO3ceramics(the additive content was respectively 0.001, 0.002, 0.003, 0.005, 0.01 molar ratio)were prepared by Sol-Gel method to study their dielectric characteristics and electric conductivities thr...Nd2O3 doped BaTiO3ceramics(the additive content was respectively 0.001, 0.002, 0.003, 0.005, 0.01 molar ratio)were prepared by Sol-Gel method to study their dielectric characteristics and electric conductivities through X-ray photoelectron spectrum (XPS). The results showed that the dielectric characteristics of Nd2O3 doped BaTiO3 ceramics were improved by doping. When Nd2O3 content was 0.003 mol, the results were even better, the dielectric constant was increased, the dielectric loss was decreased, the Curie-temperature (Tc) was 110 ℃, and the frequency characteristic was also good. The resistivity of Nd2O3 doped BaTiO3 ceramics was lower than that of pure BaTiO3 ceramics, when Nd2O3 content was 0.001 mol,the resistivity was (2.364×)108 Ω·m, the smallest. The grain resistance of Nd2O3 doped BaTiO3 ceramics exhibited NTC effect, but the grain boundary resistance showed PTC effect, and the grain boundary resistance was larger than that of the grain resistance, so the PTC effect originated from the grain boundary. The analysis of the element binding energy through X-ray photoelectron spectrum were indicated that the quantivalence of Ba2+and Ti4+in Nd2O3 doped BaTiO3 ceramics was variable, and resulted in the improvement of the conductibility of BaTiO3 ceramics.展开更多
To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-dop...To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.展开更多
A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their inter...A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features.展开更多
The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturin...The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.展开更多
Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different conce...Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.展开更多
To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemi...To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.展开更多
The high-dense nanocrystalline BaTiO3(BT)ceramics with grain size smaller than 100nm have been successfully prepared by the two step sintering and the spark plasma sintering(SPS)process.The successive transitions in n...The high-dense nanocrystalline BaTiO3(BT)ceramics with grain size smaller than 100nm have been successfully prepared by the two step sintering and the spark plasma sintering(SPS)process.The successive transitions in nanograin BT ceramics from rhombohedral to orthorhombic,tetragonal and cubic transitions,similar to those in coarse BT ceramics,were revealed by in-situ temperature dependent Raman spectrum.The multiphase coexistence and the diffused phase transition character were demonstrated in the 8nm nanocrystalline BT ceramics.展开更多
The Daniels’ barium vacancy layer model of semiconducting BaTiO3 ceramics is analyzed.A grain boundary barrier model with both acceptor states of grain boundary and barium vacancy diffusion layers for the transition ...The Daniels’ barium vacancy layer model of semiconducting BaTiO3 ceramics is analyzed.A grain boundary barrier model with both acceptor states of grain boundary and barium vacancy diffusion layers for the transition from PTC effect to grain boundary barrier layer (GBBL) capacitor is proposed.The proposed model solves the problem occurring in Daniels’ model and makes it possible to calculate physical properties of semiconducting BaTiO3 ceramics and relevant devices.展开更多
To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparat...To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparation condition and piezoelectric properties of the samples were investigated.The XRD results show that the fabric transites from rhombohedral to tetragonal gradually with the substitution of the Ba^(2+).The morphotropic phase boundaries(MPB)exists in the composition range of 0.06.展开更多
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ...SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples.展开更多
文摘Nd2O3 doped BaTiO3ceramics(the additive content was respectively 0.001, 0.002, 0.003, 0.005, 0.01 molar ratio)were prepared by Sol-Gel method to study their dielectric characteristics and electric conductivities through X-ray photoelectron spectrum (XPS). The results showed that the dielectric characteristics of Nd2O3 doped BaTiO3 ceramics were improved by doping. When Nd2O3 content was 0.003 mol, the results were even better, the dielectric constant was increased, the dielectric loss was decreased, the Curie-temperature (Tc) was 110 ℃, and the frequency characteristic was also good. The resistivity of Nd2O3 doped BaTiO3 ceramics was lower than that of pure BaTiO3 ceramics, when Nd2O3 content was 0.001 mol,the resistivity was (2.364×)108 Ω·m, the smallest. The grain resistance of Nd2O3 doped BaTiO3 ceramics exhibited NTC effect, but the grain boundary resistance showed PTC effect, and the grain boundary resistance was larger than that of the grain resistance, so the PTC effect originated from the grain boundary. The analysis of the element binding energy through X-ray photoelectron spectrum were indicated that the quantivalence of Ba2+and Ti4+in Nd2O3 doped BaTiO3 ceramics was variable, and resulted in the improvement of the conductibility of BaTiO3 ceramics.
基金Project(60661001) supported by the National Natural Science Foundation of China
文摘To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.
基金Funded by the National Key Research and Development Program of China(No.2023YFB3812200)。
文摘A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features.
基金the sponsorship of the following fund projects:the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515110578)the Guangzhou Basic and Applied Basic Research Project,China(No.2024A04J00725)the Guangdong Academy of Sciences Project of Science and Technology Development,China(Nos.2022GDASZH-2022010107 and 2022GDASZH-2022010108).Dr.Zhao would particularly like to thank his wife,M.S.Guo,for her help with the language of the manuscript and for the encouragement of their newborn baby.
文摘The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52272116 and 12002400)the Natural Science Foundation of Shandong Province (Grant No.ZR2021ME096)the Youth Innovation Team Project of Shandong Provincial Education Department (Grant No.2019KJJ012)。
文摘Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
基金supported by the Natural Science Foundation of Henan Province,China(Grant Nos.232300420353 and 232300420392)the Key Scientific Research Project of Higher Education of Henan Province(Grant No.24B140001)+2 种基金the Doctor Scientific Research Initiate Fund of Anyang Institute of Technology(Grant No.BSJ2022010)the National Basic Research Program of China(Grant No.2009CB939901)the Henan Provincial Science and Technology Research Project(Grant No.232102241016).
文摘To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.
基金Supported by the National Basic Research Program of China("973" Project)(Grant No.2002CB613301)the National Natural Science Foundation of China(Grant No.50872093)
文摘The high-dense nanocrystalline BaTiO3(BT)ceramics with grain size smaller than 100nm have been successfully prepared by the two step sintering and the spark plasma sintering(SPS)process.The successive transitions in nanograin BT ceramics from rhombohedral to orthorhombic,tetragonal and cubic transitions,similar to those in coarse BT ceramics,were revealed by in-situ temperature dependent Raman spectrum.The multiphase coexistence and the diffused phase transition character were demonstrated in the 8nm nanocrystalline BT ceramics.
文摘The Daniels’ barium vacancy layer model of semiconducting BaTiO3 ceramics is analyzed.A grain boundary barrier model with both acceptor states of grain boundary and barium vacancy diffusion layers for the transition from PTC effect to grain boundary barrier layer (GBBL) capacitor is proposed.The proposed model solves the problem occurring in Daniels’ model and makes it possible to calculate physical properties of semiconducting BaTiO3 ceramics and relevant devices.
基金Funded by the National Natural Science Foundation of China (No.61704113)the Shenzhen Science and Technology Program (No.GJHZ20210705141805015)the Scientific Research Project in School-level (SZIIT2019KJ026)。
文摘To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparation condition and piezoelectric properties of the samples were investigated.The XRD results show that the fabric transites from rhombohedral to tetragonal gradually with the substitution of the Ba^(2+).The morphotropic phase boundaries(MPB)exists in the composition range of 0.06.
基金Funded by the National Key R&D Program of China(No.2018YFB1501002)。
文摘SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples.