Several lithium-ion batteries of 18650-type were assembled with pristine or Al2O3-coated LiNi0.4Co0.2Mn0.4O2(NCM) as cathode material and mesocarbon microbeads(MCMB) as anode material.The cycling performance of th...Several lithium-ion batteries of 18650-type were assembled with pristine or Al2O3-coated LiNi0.4Co0.2Mn0.4O2(NCM) as cathode material and mesocarbon microbeads(MCMB) as anode material.The cycling performance of the batteries was examined under 25 °C at a 2C rate within a potential range of 2.75―4.20 V.The changes of the crystal structure,the lattice parameter,the mean crystallite size,and the mean micro-strain of pristine NCM and Al2O3-coated NCM during the charge-discharge cycling were determined by X-ray diffraction(XRD).The results indicate that the bulk structure of Al2O3-coated NCM is more stable than that of pristine NCM,which leads to the better cycling performance of Al2O3-coated NCM compared to that of pristine NCM.展开更多
文摘以Al_2O_3为背层(硅溶胶为粘结剂),电熔BaZrO_3作为面层材料(钇溶胶为粘结剂),1550℃烧结后制成50 mm×25 mm×5 mm的Al_2O_3/BaZrO_3双陶瓷试样。通过光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和EDS等手段观察了BaZrO_3层和Al_2O_3/BaZrO_3界面的显微结构,研究了BaZrO_3与Al_2O_3的界面反应。结果表明,面层由BaZrO_3基体和分布其上的大小10μm左右的Y稳定的ZrO_2晶粒组成;Al_2O_3/BaZrO_3界面发生反应形成厚约300μm的过渡层,界面反应生成物有BaO Al_2O_3、ZrO_2和Ba O Al_2O_32SiO_2。界面从单纯的BaZrO_3/Al_2O_3双陶瓷结构演变为BaZrO_3、ZrO_2、BaOAl_2O_3、BaOAl_2O_32SiO_2和Al_2O_3等多种物相组成的复杂结构。反应过程中Al元素基本不迁移扩散,BaZrO_3中Ba元素向Al_2O_3所在的位置扩散形成Ba O Al_2O_3,残留物形成一层条状ZrO_2,而BaOAl_2O_32SiO_2围绕着EC95(Al_2O_3+5%SiO_2)粉体颗粒周围生成。
基金Supported by the Project of Shanghai Committee of Science and Technology,China(Nos.1052nm00100,09ZR1437600)
文摘Several lithium-ion batteries of 18650-type were assembled with pristine or Al2O3-coated LiNi0.4Co0.2Mn0.4O2(NCM) as cathode material and mesocarbon microbeads(MCMB) as anode material.The cycling performance of the batteries was examined under 25 °C at a 2C rate within a potential range of 2.75―4.20 V.The changes of the crystal structure,the lattice parameter,the mean crystallite size,and the mean micro-strain of pristine NCM and Al2O3-coated NCM during the charge-discharge cycling were determined by X-ray diffraction(XRD).The results indicate that the bulk structure of Al2O3-coated NCM is more stable than that of pristine NCM,which leads to the better cycling performance of Al2O3-coated NCM compared to that of pristine NCM.