以五氧化二钒干凝胶、碳酸锰、磷酸二氢铵、碳酸锂、乙炔黑为原料,采用固相法在相对较低的温度条件下合成了x Li Mn PO4·y Li3V2(PO4)3锂离子电池复合正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)对其晶体结构和表面形貌进行表征...以五氧化二钒干凝胶、碳酸锰、磷酸二氢铵、碳酸锂、乙炔黑为原料,采用固相法在相对较低的温度条件下合成了x Li Mn PO4·y Li3V2(PO4)3锂离子电池复合正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)对其晶体结构和表面形貌进行表征。结果表明,750℃下烧结15 h合成的3Li Mn PO4·Li3V2(PO4)3为结晶良好的两相结构,颗粒粒径较小且分布比较均匀,其在室温、0.2 C倍率下首次充放电容量分别为144.8 m Ah/g和139.8 m Ah/g,循环50次后容量为130.5 m Ah/g。展开更多
Sodium ion batteries (SIBs) are very promising for large-scale energy storage in virtue of its high energy density, abundant sodium resources and low environmental impact, etc. However, it is still a big chal- lenge...Sodium ion batteries (SIBs) are very promising for large-scale energy storage in virtue of its high energy density, abundant sodium resources and low environmental impact, etc. However, it is still a big chal- lenge to develop high-performance and durable cathode materials for SIBs. Among different candidate materials, Na_3V_2(PO_4)_3 has attracted great attentions due to its high theoretical capacity (117 mAh/g), stable framework structure and excellent ionic conductivity. However, Na_3V_2(PO_4)_3 delivers inferior rate capability and cycling stability due to its poor electronic conductivity. In this work, free-standing Na_3V_2(PO_4)_3/carbon nanofiber membranes are synthesized by an electrospinning-sintering mute. The sample could deliver excellent cycling capability with specific capacity of 112 mAh/g at 1 C after 250 cycles and ultrahigh rate capability with 76.9 mAh/g even at 100 C, which is superior to many state-of- the-art SIB cathode materials. This can be attributed to the hierarchically distributed Na_3V_2(PO_4)_3 crystals in carbon nanofiber network, which possesses outstanding electronicfionic conductivity and thus leads to an ultrahigh rate capabilitY.展开更多
Using rare earth and zinc coordination polymers with aromatic carboxylic acids as the precursors, composing with the polyethylene glycol (PEG) as the dispersing media, micro crystalline phosphors Zn_3(PO_4)_2∶Eu 3+ a...Using rare earth and zinc coordination polymers with aromatic carboxylic acids as the precursors, composing with the polyethylene glycol (PEG) as the dispersing media, micro crystalline phosphors Zn_3(PO_4)_2∶Eu 3+ and LaPO_4∶Eu 3+ were synthesized by in-situ co-precipitation method. X-ray diffraction and scanning electronic micrograph were used to characterize the resultant samples, whose particle size are in the range of micrometer. The emission spectra of Zn_3(PO_4)_2∶Eu 3+ (λ_ ex=245 nm) and LaPO_4∶Eu 3+ (λ_ ex=390 nm) shows that the emission for Eu 3+ in Zn_3(PO_4)_2 is dominated by the 5D_0→7F_1 (592 nm) magnetic-dipole transition,While the dominant emission for Eu 3+ in LaPO_4 is the typical hypersensitive transition 5D_0→7F_2 (618 nm).展开更多
Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structura...Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.展开更多
液态电解质锂离子电池因其潜在的安全性问题,发展新的固态电解质锂离子电池是目前所研究的热点。磷酸铝钛锂(Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3),LATP)是一种NASICON型陶瓷材料,由于其空气稳定性和较好的Li^(+)导电性而备受关注。然...液态电解质锂离子电池因其潜在的安全性问题,发展新的固态电解质锂离子电池是目前所研究的热点。磷酸铝钛锂(Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3),LATP)是一种NASICON型陶瓷材料,由于其空气稳定性和较好的Li^(+)导电性而备受关注。然而,为了达到良好的离子导电性并降低晶界阻抗,LATP需要950℃以上的高温来实现致密化,这对于大规模应用来说耗时且昂贵。本文使用简单的溶液浇铸法,通过将LATP嵌入共聚物PVDF-HFP(聚偏氟乙烯-六氟丙烯)基体,合成新的复合固态电解质膜。在此基础上,以磷酸铁锂(LiFePO_(4))为正极,使用PVDF-HFP/LATP复合固态电解质膜进行电池组装。在室温下,利用X射线衍射仪(X-ray diffractometer,XRD)、扫描电子显微镜(scanning electron microscope,SEM)对不同质量比的固态电解质膜进行物理特性研究,并进行相关电化学测试。结果表明,PVDF-HFP/LATP质量比为5∶1的复合固态电解质膜,其LATP的NASICON型晶体结构得到了很好的保持;制备的聚合物固态电解质膜具有阻燃性;组装的半电池在常温条件下锂离子迁移数达到0.70。全电池在20次充放电循环下,放电比容量保持率为85%。展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is rea...Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is realized by doping V^(3+)site with Ga^(3+)/Cr^(3+)/Al^(3+)/Fe^(3+)/In^(3+)simultaneously(i.e.Na_(3)V_(2-x)(GaCrAlFeIn)_x(PO_(4))_(3);x=0,0.04,0.06,and 0.08)to stimulate the V^(5+)■V^(2+)reversible multi-electron redox.Such configuration high-entropy can effectively suppress the structural collapse,enhance the redox reversibility in high working voltage(4.0 V),and optimize the electronic induced effect.The in-situ X-ray powder diffraction and in-situ electrochemical impedance spectroscopy tests efficaciously confirm the robust structu ral recovery and far lower polarization throughout an entire charge-discharge cycle during 1.6-4.3 V,respectively.Moreover,the density functional theory calculations clarify the stronger metallicity of high-entropy electrode than the bare that is derived from the more mobile free electrons surrounding the vicinity of Fermi level.By grace of high-entropy design and multi-electron transfer reactions,the optimal Na_(3)V_(1.7)(GaCrAlFeIn)_(0.06)(PO_(4))_(3)can exhibit perfect cycling/rate performances(90.97%@5000 cycles@30 C;112 mA h g^(-1)@10 C and 109 mA h g^(-1)@30 C,2.0-4.3 V).Furthermore,it can supply ultra-high185 mA h g^(-1)capacity with fa ntastic energy density(522 W h kg^(-1))in half-cells(1.4-4.3 V),and competitive capacity(121 mA h g^(-1))as well as energy density(402 W h kg^(-1))in full-cells(1.6-4.1 V),demonstrating enormous application potential for sodium-ion batteries.展开更多
High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Fur...High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Furthermore,the low electrical conductivity combined with a decline in capacity upon prolonged cycling(>1000 cycles)related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability.The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials.Herein,we introduce a new carbon-coated Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3)(NVFTP/C)material as a promising candidate in the NASICON family of cathodes for SIBs.With a high specific energy of∼457 Wh kg^(-1) and a high Na+insertion voltage of 3.0 V versus Na^(+)/Na,this cathode can undergo a reversible single-phase solid-solution and two-phase(de)sodiation evolution at 28 C(1 C=174.7 mAh g^(-1))for up to 10,000 cycles.This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials(Fe and Ti)with enriched Na^(+)-storage properties in practical SIBs.展开更多
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_...In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.展开更多
Sodium-ion batteries(SIBs)have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries(LIBs).Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)as a common cathode of SIBs,featur...Sodium-ion batteries(SIBs)have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries(LIBs).Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)as a common cathode of SIBs,features the merits of high operating voltage,small volume change and favorable specific energy density.However,it suffers from poor cycling stability and rate performance induced by its low intrinsic conductivity.Herein,we propose an ingenious strategy targeting superior SIBs through cross-linked NVPF with multi-dimensional nanocarbon frameworks composed of amorphous carbon and carbon nanotubes(NVPF@C@CNTs).This rational design ensures favorable particle size for shortened sodium ion transmission pathway as well as improved electronic transfer network,thus leading to enhanced charge transfer kinetics and superior cycling stability.Benefited from this unique structure,significantly improved electrochemical properties are obtained,including high specific capacity(126.9 mAh g^(-1)at 1 C,1 C=128 mA g^(-1))and remarkably improved long-term cycling stability with 93.9%capacity retention after 1000 cycles at 20 C.The energy density of 286.8 Wh kg^(-1)can be reached for full cells with hard carbon as anode(NVPF@C@CNTs//HC).Additionally,the electrochemical performance of the full cell at high temperature is also investigated(95.3 mAh g^(-1)after 100 cycles at 1 C at 50℃).Such nanoscale dual-carbon networks engineering and thorough discussion of ion diffusion kinetics might make contributions to accelerating the process of phosphate cathodes in SIBs for large-scale energy storages.展开更多
Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.E...Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V.展开更多
文摘以五氧化二钒干凝胶、碳酸锰、磷酸二氢铵、碳酸锂、乙炔黑为原料,采用固相法在相对较低的温度条件下合成了x Li Mn PO4·y Li3V2(PO4)3锂离子电池复合正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)对其晶体结构和表面形貌进行表征。结果表明,750℃下烧结15 h合成的3Li Mn PO4·Li3V2(PO4)3为结晶良好的两相结构,颗粒粒径较小且分布比较均匀,其在室温、0.2 C倍率下首次充放电容量分别为144.8 m Ah/g和139.8 m Ah/g,循环50次后容量为130.5 m Ah/g。
基金the financial support from the 973 program of China (Grant No. 2014CB932401, 2015CB932500)Beijing Nova Program (Grant No. Z161100004916099)the Tsinghua University Initiative Scientific Research Program (Grant Nos. 20173080001, 20151080367)
文摘Sodium ion batteries (SIBs) are very promising for large-scale energy storage in virtue of its high energy density, abundant sodium resources and low environmental impact, etc. However, it is still a big chal- lenge to develop high-performance and durable cathode materials for SIBs. Among different candidate materials, Na_3V_2(PO_4)_3 has attracted great attentions due to its high theoretical capacity (117 mAh/g), stable framework structure and excellent ionic conductivity. However, Na_3V_2(PO_4)_3 delivers inferior rate capability and cycling stability due to its poor electronic conductivity. In this work, free-standing Na_3V_2(PO_4)_3/carbon nanofiber membranes are synthesized by an electrospinning-sintering mute. The sample could deliver excellent cycling capability with specific capacity of 112 mAh/g at 1 C after 250 cycles and ultrahigh rate capability with 76.9 mAh/g even at 100 C, which is superior to many state-of- the-art SIB cathode materials. This can be attributed to the hierarchically distributed Na_3V_2(PO_4)_3 crystals in carbon nanofiber network, which possesses outstanding electronicfionic conductivity and thus leads to an ultrahigh rate capabilitY.
文摘Using rare earth and zinc coordination polymers with aromatic carboxylic acids as the precursors, composing with the polyethylene glycol (PEG) as the dispersing media, micro crystalline phosphors Zn_3(PO_4)_2∶Eu 3+ and LaPO_4∶Eu 3+ were synthesized by in-situ co-precipitation method. X-ray diffraction and scanning electronic micrograph were used to characterize the resultant samples, whose particle size are in the range of micrometer. The emission spectra of Zn_3(PO_4)_2∶Eu 3+ (λ_ ex=245 nm) and LaPO_4∶Eu 3+ (λ_ ex=390 nm) shows that the emission for Eu 3+ in Zn_3(PO_4)_2 is dominated by the 5D_0→7F_1 (592 nm) magnetic-dipole transition,While the dominant emission for Eu 3+ in LaPO_4 is the typical hypersensitive transition 5D_0→7F_2 (618 nm).
文摘Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.
文摘液态电解质锂离子电池因其潜在的安全性问题,发展新的固态电解质锂离子电池是目前所研究的热点。磷酸铝钛锂(Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3),LATP)是一种NASICON型陶瓷材料,由于其空气稳定性和较好的Li^(+)导电性而备受关注。然而,为了达到良好的离子导电性并降低晶界阻抗,LATP需要950℃以上的高温来实现致密化,这对于大规模应用来说耗时且昂贵。本文使用简单的溶液浇铸法,通过将LATP嵌入共聚物PVDF-HFP(聚偏氟乙烯-六氟丙烯)基体,合成新的复合固态电解质膜。在此基础上,以磷酸铁锂(LiFePO_(4))为正极,使用PVDF-HFP/LATP复合固态电解质膜进行电池组装。在室温下,利用X射线衍射仪(X-ray diffractometer,XRD)、扫描电子显微镜(scanning electron microscope,SEM)对不同质量比的固态电解质膜进行物理特性研究,并进行相关电化学测试。结果表明,PVDF-HFP/LATP质量比为5∶1的复合固态电解质膜,其LATP的NASICON型晶体结构得到了很好的保持;制备的聚合物固态电解质膜具有阻燃性;组装的半电池在常温条件下锂离子迁移数达到0.70。全电池在20次充放电循环下,放电比容量保持率为85%。
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金financially supported by the National Key Research and Development Program of China (2022YFA1505700,2019YFA0210403)the National Natural Science Foundation of China (52102216)+1 种基金the Natural Science Foundation of Fujian Province (2022J01625,2022-S-002)the Innovation Training Program for College Students (202310394020,cxxl-2023097,cxxl-2024131,cxxl-2024136)。
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is realized by doping V^(3+)site with Ga^(3+)/Cr^(3+)/Al^(3+)/Fe^(3+)/In^(3+)simultaneously(i.e.Na_(3)V_(2-x)(GaCrAlFeIn)_x(PO_(4))_(3);x=0,0.04,0.06,and 0.08)to stimulate the V^(5+)■V^(2+)reversible multi-electron redox.Such configuration high-entropy can effectively suppress the structural collapse,enhance the redox reversibility in high working voltage(4.0 V),and optimize the electronic induced effect.The in-situ X-ray powder diffraction and in-situ electrochemical impedance spectroscopy tests efficaciously confirm the robust structu ral recovery and far lower polarization throughout an entire charge-discharge cycle during 1.6-4.3 V,respectively.Moreover,the density functional theory calculations clarify the stronger metallicity of high-entropy electrode than the bare that is derived from the more mobile free electrons surrounding the vicinity of Fermi level.By grace of high-entropy design and multi-electron transfer reactions,the optimal Na_(3)V_(1.7)(GaCrAlFeIn)_(0.06)(PO_(4))_(3)can exhibit perfect cycling/rate performances(90.97%@5000 cycles@30 C;112 mA h g^(-1)@10 C and 109 mA h g^(-1)@30 C,2.0-4.3 V).Furthermore,it can supply ultra-high185 mA h g^(-1)capacity with fa ntastic energy density(522 W h kg^(-1))in half-cells(1.4-4.3 V),and competitive capacity(121 mA h g^(-1))as well as energy density(402 W h kg^(-1))in full-cells(1.6-4.1 V),demonstrating enormous application potential for sodium-ion batteries.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant funded by the Korean government(MSIT)(NRF-2018R1A5A1025224 and NRF-2021R1A4A1052051)This work was also supported by the National Research Foundation of Korea Grant funded by the Korean Government Ministry of Education and Science Technology(NRF-2021R1I1A3060193).
文摘High electrochemical stability and safety make Na+superionic conductor(NASICON)-class cathodes highly desirable for Na-ion batteries(SIBs).However,their practical capacity is limited,leading to low specific energy.Furthermore,the low electrical conductivity combined with a decline in capacity upon prolonged cycling(>1000 cycles)related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability.The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials.Herein,we introduce a new carbon-coated Na_(3)VFe_(0.5)Ti_(0.5)(PO_(4))_(3)(NVFTP/C)material as a promising candidate in the NASICON family of cathodes for SIBs.With a high specific energy of∼457 Wh kg^(-1) and a high Na+insertion voltage of 3.0 V versus Na^(+)/Na,this cathode can undergo a reversible single-phase solid-solution and two-phase(de)sodiation evolution at 28 C(1 C=174.7 mAh g^(-1))for up to 10,000 cycles.This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials(Fe and Ti)with enriched Na^(+)-storage properties in practical SIBs.
基金supported by grants from the National Natural Science Foundation of China(No.22272055)multifunctional platform for innovation of ECNU(EPR).
文摘In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.
基金financially supported by Science and Technology Foundation of Guizhou Province(QKHZC[2020]2Y037)the Science and Technology Innovation Program of Hunan Province(2020RC4005,2019RS1004)+2 种基金Research start-up funding from Central South University(202044019)Innovation Mover Program of Central South University(2020CX007)National Natural Science Foundation of China(U21A20284)
文摘Sodium-ion batteries(SIBs)have rapidly risen to the forefront of energy storage systems as a promising supplementary for Lithium-ion batteries(LIBs).Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)as a common cathode of SIBs,features the merits of high operating voltage,small volume change and favorable specific energy density.However,it suffers from poor cycling stability and rate performance induced by its low intrinsic conductivity.Herein,we propose an ingenious strategy targeting superior SIBs through cross-linked NVPF with multi-dimensional nanocarbon frameworks composed of amorphous carbon and carbon nanotubes(NVPF@C@CNTs).This rational design ensures favorable particle size for shortened sodium ion transmission pathway as well as improved electronic transfer network,thus leading to enhanced charge transfer kinetics and superior cycling stability.Benefited from this unique structure,significantly improved electrochemical properties are obtained,including high specific capacity(126.9 mAh g^(-1)at 1 C,1 C=128 mA g^(-1))and remarkably improved long-term cycling stability with 93.9%capacity retention after 1000 cycles at 20 C.The energy density of 286.8 Wh kg^(-1)can be reached for full cells with hard carbon as anode(NVPF@C@CNTs//HC).Additionally,the electrochemical performance of the full cell at high temperature is also investigated(95.3 mAh g^(-1)after 100 cycles at 1 C at 50℃).Such nanoscale dual-carbon networks engineering and thorough discussion of ion diffusion kinetics might make contributions to accelerating the process of phosphate cathodes in SIBs for large-scale energy storages.
基金supported by the National Natural Science Foundation of China(52172201,51732005,51902118,and 52102249)the China Postdoctoral Science Foundation(2019M662609and 2020T130217)for financial support。
文摘Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V.