Thermostable α-amylases hold a very important place in commercial industrial applications in Sri Lanka. Therefore, the main aim of this study was to identify superior Bacillus strain and optimize growth conditions th...Thermostable α-amylases hold a very important place in commercial industrial applications in Sri Lanka. Therefore, the main aim of this study was to identify superior Bacillus strain and optimize growth conditions that could yield high α-amylase production. Three Bacillus strains, B. amyloliquefaciens ATCC 23350, B. licheniformis ATCC 14580 and B. megaterium ATCC 14581 were used for the study. Shake flask culture experiments were conducted to identify the effect of various fermentation conditions such as growth temperature, incubation period, carbon source, nitrogen source, initial pH and carbon concentration on extracellular α-amylase production. DNSA assay was carried out to determine the enzyme activity. The highest temperature for enzyme activity was reported by B. licheniformis at 85°C, followed by B. amyloliquefaciens at 75°C and B. megaterium at 45°C. Both B. amyloliquefaciens and B. licheniformis were able to give their optimum enzyme production at 37°C, while B. megaterium at 30°C in 150 rpm with initial pH of 7. B. licheniformis and B. amyloliquefaciens gave their optimum yield of the enzyme after 48 h of incubation while B. megaterium gave after 24 h of incubation. Among the carbon sources tested cassava starch was able to give the highest enzyme production. For B. amyloliquefaciens, the highest yield of the enzyme was obtained with 2% of starch, tryptone as a nitrogen source and initial pH of 7. Maximum enzyme production for B. licheniformis was obtained with 1.5% of starch, KNO<sub>3</sub> as a nitrogen source and initial pH of 6. For B. megaterium 1% of starch, tryptone and pH 7.5 induced the optimum α-amylase production. According to the results obtained, B. amyloliquefaciens is the highest thermostable alpha amylase producer. However, according to the industrial requirement, B. licheniformis can also be used as an enzyme producer due to its stability in higher temperatures.展开更多
A set of 38 Bacillus strains isolated from peanut geocarposphere soil were screened as potential biological control agent anti-Aspergillus parasiticus. Tip-culture method with rapid and quantitative characteristics wa...A set of 38 Bacillus strains isolated from peanut geocarposphere soil were screened as potential biological control agent anti-Aspergillus parasiticus. Tip-culture method with rapid and quantitative characteristics was used to determine anti-A. parasiticus activity and the process of isolation could be accelerated with this method. 12 out of 38 Bacillus strains showed high anti-alfatoxin production activity. These 12 Bacillus strains were selected to identify the characteristics of promoting peanuts germination rate. Pot experiment in greenhouse was carried out by using these strains which can promote peanuts germination. Phytohormones in the fermentation broth were also detected as another important reference factor to select the isolates as biological control agent with PGPR features. These Bacillus strains isolated from peanut geocarposphere soil not only had high ability anti-Aspergillus parasiticus, but also promoted peanut growth. Therefore, these Bacillus strains were well adapted to peanut production in the ifeld as biological control agent with plant growth promoting rhizobacteria (PGPR) features.展开更多
文摘Thermostable α-amylases hold a very important place in commercial industrial applications in Sri Lanka. Therefore, the main aim of this study was to identify superior Bacillus strain and optimize growth conditions that could yield high α-amylase production. Three Bacillus strains, B. amyloliquefaciens ATCC 23350, B. licheniformis ATCC 14580 and B. megaterium ATCC 14581 were used for the study. Shake flask culture experiments were conducted to identify the effect of various fermentation conditions such as growth temperature, incubation period, carbon source, nitrogen source, initial pH and carbon concentration on extracellular α-amylase production. DNSA assay was carried out to determine the enzyme activity. The highest temperature for enzyme activity was reported by B. licheniformis at 85°C, followed by B. amyloliquefaciens at 75°C and B. megaterium at 45°C. Both B. amyloliquefaciens and B. licheniformis were able to give their optimum enzyme production at 37°C, while B. megaterium at 30°C in 150 rpm with initial pH of 7. B. licheniformis and B. amyloliquefaciens gave their optimum yield of the enzyme after 48 h of incubation while B. megaterium gave after 24 h of incubation. Among the carbon sources tested cassava starch was able to give the highest enzyme production. For B. amyloliquefaciens, the highest yield of the enzyme was obtained with 2% of starch, tryptone as a nitrogen source and initial pH of 7. Maximum enzyme production for B. licheniformis was obtained with 1.5% of starch, KNO<sub>3</sub> as a nitrogen source and initial pH of 6. For B. megaterium 1% of starch, tryptone and pH 7.5 induced the optimum α-amylase production. According to the results obtained, B. amyloliquefaciens is the highest thermostable alpha amylase producer. However, according to the industrial requirement, B. licheniformis can also be used as an enzyme producer due to its stability in higher temperatures.
基金supported by the National Natural Science Foundation of China (30571244, 30870003)the National Key Technology R&D Program of China (2009BADA0B05-4)
文摘A set of 38 Bacillus strains isolated from peanut geocarposphere soil were screened as potential biological control agent anti-Aspergillus parasiticus. Tip-culture method with rapid and quantitative characteristics was used to determine anti-A. parasiticus activity and the process of isolation could be accelerated with this method. 12 out of 38 Bacillus strains showed high anti-alfatoxin production activity. These 12 Bacillus strains were selected to identify the characteristics of promoting peanuts germination rate. Pot experiment in greenhouse was carried out by using these strains which can promote peanuts germination. Phytohormones in the fermentation broth were also detected as another important reference factor to select the isolates as biological control agent with PGPR features. These Bacillus strains isolated from peanut geocarposphere soil not only had high ability anti-Aspergillus parasiticus, but also promoted peanut growth. Therefore, these Bacillus strains were well adapted to peanut production in the ifeld as biological control agent with plant growth promoting rhizobacteria (PGPR) features.