[Objective] This study aimed to investigate the biological characteristics of a Bacillus thuringiensis strain YNI-1, which has high virulence to Lepidoptera spp. [Method] The crystal protein of YNI-1 was analyzed by S...[Objective] This study aimed to investigate the biological characteristics of a Bacillus thuringiensis strain YNI-1, which has high virulence to Lepidoptera spp. [Method] The crystal protein of YNI-1 was analyzed by SDS-PAGE, and its indoor and field efficacy for Lepidoptera spp. was investigated. [Result] The parasporal crystal of YNI-1 has a diamond-like structure. The molecular weight of the original toxin protein is 136 kDa. After trypsin treatment, the original toxin protein was hy- drolyzed into active toxin protein with molecular weight of 63 kDa. For Plutella xy- Iostella and Pieris rapae, the indoor efficacy of B. thuringiensis was better than that of commercial B. thuringiensis (WP). In view of field efficacy, rate of YNI-1 strain was higher than that of commercial B [Conelusion] YNI-1 strain has excellent development potential. the insects reduced thuringiensis (WP).展开更多
Eight insecticidal crystal proteins of Bacillus thuringiensis, CrylAa, CrylAb, CrylAc, CrylB, Cry2Aa, CrylC, CrylDa and Cry 1Ea were assessed for toxicity against 1 st instar larvae of rice leaf folder, Cnaphalocrocis...Eight insecticidal crystal proteins of Bacillus thuringiensis, CrylAa, CrylAb, CrylAc, CrylB, Cry2Aa, CrylC, CrylDa and Cry 1Ea were assessed for toxicity against 1 st instar larvae of rice leaf folder, Cnaphalocrocis medinalis (Guenee) at 48 HAT and 72 HAT. Bioassay results depicted CrylAa was the most toxic (LCso 2.35 ppm) followed by CrylBa (LCso 8,50 ppm) and CrylAb (LCso 8.73 ppm) at 48 HAT, whereas, at 72 HAT CrylAb proved to be highly toxic (LC50 0.50 ppm) followed by CrylAa (LCso 4.07 ppm), CrylAc (LCso 4,84 ppm) and CrylBa (LCso 6.42 ppm). Toxins Cry2Aa, CrylCa, CrylDa and CrylEa did not resulted in any mortality at 48 HAT and 72 HAT, respectively. Baseline estimates for CrylAb against 1st instar larvae of C. medinalis sampled from seven geographical locations revealed variation in LC50's from 0.37 ppm to LC50 16.25 ppm at 48 HAT and LC50 0.50 ppm to LC50 6.49 ppm 72 HAT, respectively with relative resistance ratios of 44-fold and 13-fold at 48 HAT and 72 HAT over the susceptible population.展开更多
In this study, we rapidly identified Bacillus thuringiensis 4.0718 strain that harbored the known cry1 and cry2 type genes by a PCR strategy. Three pairs of universal oligonucleotide primers were designed to detect al...In this study, we rapidly identified Bacillus thuringiensis 4.0718 strain that harbored the known cry1 and cry2 type genes by a PCR strategy. Three pairs of universal oligonucleotide primers were designed to detect all known cry1, cry2 and cry3 type gene sequences. Then the DNA of the positive strain 4.0718 was probed with a set of specific primers. One feacture of this screening method was that each gene was expected to produce a PCR product having a precise molecular weight. PCR products having different sizes probably represented the gene was a potentially novel gene. Differentiations among these genes was determined on the basis of the electrophoresis patterns of PCR products. Finally, five cry1 type genes (cry1Aa, cry1Ab, cry1Ac, cry1Cb, a novel cry4.5 type genes) and one cry2Ac type gene had been detected from Bacillus thuringiensis 4.0718 strain.展开更多
基金Supported by Natural Science Foundation of Yanbian University(2011-34)~~
文摘[Objective] This study aimed to investigate the biological characteristics of a Bacillus thuringiensis strain YNI-1, which has high virulence to Lepidoptera spp. [Method] The crystal protein of YNI-1 was analyzed by SDS-PAGE, and its indoor and field efficacy for Lepidoptera spp. was investigated. [Result] The parasporal crystal of YNI-1 has a diamond-like structure. The molecular weight of the original toxin protein is 136 kDa. After trypsin treatment, the original toxin protein was hy- drolyzed into active toxin protein with molecular weight of 63 kDa. For Plutella xy- Iostella and Pieris rapae, the indoor efficacy of B. thuringiensis was better than that of commercial B. thuringiensis (WP). In view of field efficacy, rate of YNI-1 strain was higher than that of commercial B [Conelusion] YNI-1 strain has excellent development potential. the insects reduced thuringiensis (WP).
文摘Eight insecticidal crystal proteins of Bacillus thuringiensis, CrylAa, CrylAb, CrylAc, CrylB, Cry2Aa, CrylC, CrylDa and Cry 1Ea were assessed for toxicity against 1 st instar larvae of rice leaf folder, Cnaphalocrocis medinalis (Guenee) at 48 HAT and 72 HAT. Bioassay results depicted CrylAa was the most toxic (LCso 2.35 ppm) followed by CrylBa (LCso 8,50 ppm) and CrylAb (LCso 8.73 ppm) at 48 HAT, whereas, at 72 HAT CrylAb proved to be highly toxic (LC50 0.50 ppm) followed by CrylAa (LCso 4.07 ppm), CrylAc (LCso 4,84 ppm) and CrylBa (LCso 6.42 ppm). Toxins Cry2Aa, CrylCa, CrylDa and CrylEa did not resulted in any mortality at 48 HAT and 72 HAT, respectively. Baseline estimates for CrylAb against 1st instar larvae of C. medinalis sampled from seven geographical locations revealed variation in LC50's from 0.37 ppm to LC50 16.25 ppm at 48 HAT and LC50 0.50 ppm to LC50 6.49 ppm 72 HAT, respectively with relative resistance ratios of 44-fold and 13-fold at 48 HAT and 72 HAT over the susceptible population.
文摘In this study, we rapidly identified Bacillus thuringiensis 4.0718 strain that harbored the known cry1 and cry2 type genes by a PCR strategy. Three pairs of universal oligonucleotide primers were designed to detect all known cry1, cry2 and cry3 type gene sequences. Then the DNA of the positive strain 4.0718 was probed with a set of specific primers. One feacture of this screening method was that each gene was expected to produce a PCR product having a precise molecular weight. PCR products having different sizes probably represented the gene was a potentially novel gene. Differentiations among these genes was determined on the basis of the electrophoresis patterns of PCR products. Finally, five cry1 type genes (cry1Aa, cry1Ab, cry1Ac, cry1Cb, a novel cry4.5 type genes) and one cry2Ac type gene had been detected from Bacillus thuringiensis 4.0718 strain.