期刊文献+
共找到9,599篇文章
< 1 2 250 >
每页显示 20 50 100
Development of a Post Quantum Encryption Key Generation Algorithm Using Electromagnetic Wave Propagation Theory
1
作者 Vincent Mbonigaba Fulgence Nahayo +1 位作者 Octave Moutsinga Okalas-Ossami Dieudonné 《Journal of Information Security》 2024年第1期53-62,共10页
In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has beco... In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys. 展开更多
关键词 KEY Wave ELECTROMAGNETIC CRYPTOGRAPHY POST Quantum Network Protocol propagation algorithm
下载PDF
Age and Gender Classification Using Backpropagation and Bagging Algorithms
2
作者 Ammar Almomani Mohammed Alweshah +6 位作者 Waleed Alomoush Mohammad Alauthman Aseel Jabai Anwar Abbass Ghufran Hamad Meral Abdalla Brij B.Gupta 《Computers, Materials & Continua》 SCIE EI 2023年第2期3045-3062,共18页
Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and ... Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%. 展开更多
关键词 Classify voice gender ACCENT age bagging algorithms back propagation algorithms AI classifiers
下载PDF
正交实验结合AHP和GA-BP神经网络优化益黄散醇提工艺 被引量:1
3
作者 王巍 杨武杰 +4 位作者 韩宇 安悦言 郝季 张强 鞠成国 《中国药房》 CAS 北大核心 2024年第3期327-332,共6页
目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法... 目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法(AHP)进行赋权并计算综合评分。通过验证正交实验和遗传算法(GA)-反向传播神经网络(BP神经网络)所预测的结果确定益黄散最佳醇提工艺参数。结果 正交实验优选的最佳醇提工艺参数为乙醇体积分数60%、液料比14∶1(mL/g)、提取时间90 min、提取2次,验证所得综合评分为79.19分;GA-BP神经网络优选的最佳醇提工艺参数为乙醇体积分数65%、液料比14∶1(mL/g)、提取时间60 min、提取2次,验证所得综合评分为85.30分,高于正交实验所得结果。结论 采用正交实验结合GA-BP神经网络的寻优方法较传统的正交实验寻优方法效果更佳,其优选出的益黄散最佳醇提工艺稳定可靠。 展开更多
关键词 益黄散 醇提工艺 正交实验 遗传算法 bp神经网络 层次分析法
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
4
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) bp神经网络(bpNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
基于BP神经网络算法的异步电机故障诊断系统研究 被引量:1
5
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB bp神经网络 遗传算法 网络优化
下载PDF
车轴滚齿加工工艺参数GA-BP模型NSGA-Ⅱ优化
6
作者 班希翼 李强 +1 位作者 贺小龙 余建勇 《机械设计与制造》 北大核心 2024年第10期145-148,156,共5页
研究了高速条件下的滚齿工艺参数设置与优化方面的工作,采用新的非支配遗传算法NSGA-Ⅱ设计了相应的优化数学模型,优化达到最低能耗以及最长的刀具使用期限,再以遗传反向传播算法(GABP)神经网络为目标设置预测模型并建立适应度函数,完... 研究了高速条件下的滚齿工艺参数设置与优化方面的工作,采用新的非支配遗传算法NSGA-Ⅱ设计了相应的优化数学模型,优化达到最低能耗以及最长的刀具使用期限,再以遗传反向传播算法(GABP)神经网络为目标设置预测模型并建立适应度函数,完成迭代优化后获得匹配滚齿工艺的Pareto最优条件。研究结果表明:这里预测模型经过5次循环计算后,均方差为10-5,得到0.000425的最优值,推断上述网络满足良好的稳定性。刀具寿命误差相对后者降低16%,降低了36%的能量损耗,发现GABP算法具备更优收敛能力。Pareto解集获得了比相近加工样本集更优的性能,因此采用多目标优化模型可以确保加工能耗和刀具使用寿命同时达到最佳状态。该研究对提高的滚齿加工工艺参数以及提高机加工效率具有很好的实际应用价值。 展开更多
关键词 滚齿 工艺参数 bp神经网络 遗传算法 多目标优化
下载PDF
紫外光谱结合BP神经网络算法建立食用油掺伪煎炸油的快速鉴定模型
7
作者 陈林林 吴松遥 +5 位作者 王玲 张铭 李昕彤 张海鹏 郝熙 李伟 《中国粮油学报》 CAS CSCD 北大核心 2024年第6期206-214,共9页
为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后... 为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后的光谱特征峰与BP(Backpropagation)神经网络算法结合建立食用油掺伪煎炸油模型,对掺入煎炸油类别、煎炸时间和煎炸油含量进行鉴别分析。结果表明二阶导数预处理后掺伪煎炸油的光谱特征峰中大豆油为446、462 nm、玉米油为268、274 nm、葵花籽油为280、288 nm,根据其特征峰位与峰值建立Levenberg–Marquardt算法(LMA)、动量梯度下降法(MGD)及弹性梯度下降法(EGD)掺伪模型识别率分别为98.15%、91.67%、95.52%。 展开更多
关键词 食用油 煎炸油 紫外光谱 掺伪 bp神经网络算法
下载PDF
基于改进GWO-BP神经网络的电磁线圈温升预测
8
作者 刘文超 刘远航 +1 位作者 游达章 潘传林 《制造技术与机床》 北大核心 2024年第10期73-79,共7页
针对差速器运转时电磁线圈温升的非线性与复杂性以及传统BP神经网络在预测中存在的问题,采用改进后的灰狼算法(gray wolf optimization,GWO)对BP神经网络进行优化,并根据室温环境下现场跟踪试验的数据建立以运行时间、直流电流、运转功... 针对差速器运转时电磁线圈温升的非线性与复杂性以及传统BP神经网络在预测中存在的问题,采用改进后的灰狼算法(gray wolf optimization,GWO)对BP神经网络进行优化,并根据室温环境下现场跟踪试验的数据建立以运行时间、直流电流、运转功率为输入,以某型电子锁式差速器电磁线圈连续工作8 h后的实时温度与初始环境温度间的温升差值为输出的网络预测模型。选取平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)、均方误差(mean square error,MSE)作为系统评价指标,分别与传统BP网络模型、粒子群算法优化后的网络模型(PSO-BP)进行对比,结果表明GWO-BP神经网络模型具有更好的预测能力和更小的误差精度。为实现汽车轴间差速器上电磁线圈温升变化的精准预测提供了方法和思路。 展开更多
关键词 灰狼算法 bp神经网络 电磁线圈 温升
下载PDF
基于HSS-MCC融合模型及SSA-BP神经网络开展深基坑超大变形预测研究
9
作者 倪小东 张宇科 +3 位作者 焉磊 王东兴 徐硕 王媛 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期35-45,共11页
软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神... 软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神经网络在基坑变形预测中得到广泛应用,但在训练过程中,权阈值易陷入局部最优解,影响预测的准确性.据此,依托南京地区典型软土深基坑工程,采用Midas中的HSS模型与MCC模型进行分析,比对两种模型的桩体变形量差异,并基于最小二乘准则对两模型进行线性融合,融合模型可对后续区段监测数据进行校准及补充.通过融合麻雀搜索算法对BP神经网络进行优化,在其训练过程中快速收敛,得到全局最优的权阈值,依托狭长基坑已开挖区段监测数据学习训练,进而依据后续区段浅部开挖揭露深部变形特征,预测结果与实测值吻合度较高.研究结果对软土地区深基坑大变形的预测研究具有重要参考价值. 展开更多
关键词 深基坑 大变形 HSS模型 MCC模型 bp神经网络 麻雀搜索算法
下载PDF
基于FA-BP神经网络的生姜干燥含水率预测
10
作者 王雷 胡书旭 +2 位作者 钟康生 康宏彬 肖波 《农机化研究》 北大核心 2024年第7期241-248,共8页
为探索生姜的干燥特性,并实现生姜干燥的含水率预测,研究了不同干燥温度(50、55、60℃)、干燥风速(1.0、2.0、3.0m/s)、切片长度(30、35、40mm)对生姜干燥时间和干燥速率的影响。结合BP神经网络自适应能力、泛化能力、学习能力强和萤火... 为探索生姜的干燥特性,并实现生姜干燥的含水率预测,研究了不同干燥温度(50、55、60℃)、干燥风速(1.0、2.0、3.0m/s)、切片长度(30、35、40mm)对生姜干燥时间和干燥速率的影响。结合BP神经网络自适应能力、泛化能力、学习能力强和萤火虫算法(FA)参数少、寻优能力强、收敛速度快等特点,将干燥温度、干燥风速、切片长度和干燥时间作为输入层,隐藏层个数为10,输出层为生姜的含水率,搭建一个拓扑结构为“4-10-1”的FA-BP神经网络模型。研究结果表明:干燥温度、干燥风速、切片长度都是影响生姜含水率的关键因素,增加干燥风速、提高干燥温度和减少切片长度能有效缩短生姜的干燥时间,提高干燥效率。选用萤火虫算法优化BP神经网络的权值和阈值,减少了神经网络的训练时间,提高了精准度,其含水率预测值与试验值之间的决定系数R2=0.999 02,均方根误差RMSE为0.002 99,含水率预测结果准确且迅速,能够为生姜干燥过程中的含水率在线预测提供科学依据。 展开更多
关键词 生姜 热泵干燥 含水率预测 萤火虫算法 bp神经网络
下载PDF
基于MIV-PSO-BPNN的掘进面风温预测方法
11
作者 程磊 李正健 +2 位作者 贺智勇 史浩镕 王鑫 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期11-17,共7页
目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPN... 目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPNN模型、PSO-BPNN模型、SVR模型相比较。结果结果表明:MIV-PSO-BPNN预测模型的相对误差为-0.47%~1.81%,分别优于PSO-BPNN、BPNN、SVR预测模型的-3.96%~1.93%,-5.54%~2.98%,-2.16%~2.95%,预测模型的误差为-0.1~0.5℃,表明预测值与实测值基本一致;与BPNN预测模型、PSO-BPNN预测模型、SVR预测模型相比,MIV-PSO-BPNN预测模型的预测结果平均绝对误差分别减少65%,54%,50%,均方误差分别减少88%,78%,69%,表明该预测模型的预测效果优于其他3种模型。结论所提模型适用于矿井掘进工作面风温的预测。 展开更多
关键词 bp神经网络 MIV算法 粒子群优化算法 风温预测 算法优化
下载PDF
基于DBO-BP的工业机器人定位误差补偿方法
12
作者 刘麒 谭丁诚 +1 位作者 刘振刚 王影 《吉林化工学院学报》 CAS 2024年第1期59-66,共8页
为提高工业机器人绝对定位精度,提出一种基于DBO-BP与离线前馈校正相结合的方法。该方法适用于工业机器人定位误差补偿研究。通过使用拉丁超立方抽样法获取工业机器人的位姿样本,并利用BP神经网络建立误差预测模型,应用DBO优化算法改善... 为提高工业机器人绝对定位精度,提出一种基于DBO-BP与离线前馈校正相结合的方法。该方法适用于工业机器人定位误差补偿研究。通过使用拉丁超立方抽样法获取工业机器人的位姿样本,并利用BP神经网络建立误差预测模型,应用DBO优化算法改善了局部最优现象,从而提高了模型的收敛性和鲁棒性。经过离线前馈补偿处理后,降低了工业机器人定位误差,大幅提高了机器人绝对定位精度。这种方法能够有效提高机器人的精度和稳定性,并为工业机器人的精准定位问题提供了可行的解决方案。 展开更多
关键词 工业机器人 bp神经网络 DBO算法 绝对定位精度 误差补偿
下载PDF
基于多特征参数的GA-WOA-BP火灾概率预测模型研究
13
作者 刘全义 吴孟洋 +1 位作者 艾洪舟 朱培 《消防科学与技术》 CAS 北大核心 2024年第6期820-825,共6页
为进一步提升火灾概率预测的准确率,针对BP神经网络在拟合过程中探测精度低、泛化能力差的问题,提出一种基于多特征参数的GA-WOA-BP火灾概率预测模型。首先通过试验采集了榉木、棉绳阴燃、明燃时的火灾特征参量,计算后得到了相应的火灾... 为进一步提升火灾概率预测的准确率,针对BP神经网络在拟合过程中探测精度低、泛化能力差的问题,提出一种基于多特征参数的GA-WOA-BP火灾概率预测模型。首先通过试验采集了榉木、棉绳阴燃、明燃时的火灾特征参量,计算后得到了相应的火灾类型发生概率;其次通过遗传算法优化BP神经网络的隐藏层结构,鲸鱼优化算法优化BP神经网络的初始权重,构建了GA-WOA-BP模型,提高融合算法的拟合能力。最后,以多特征火灾参数作为模型输入,以不同类型火灾发生概率作为输出完成火灾概率的预测。结果表明,相比单纯BP神经网络,基于多特征参数的GA-WOA-BP火灾概率预测模型具有更好的预测性能,其评价指标RMSE、MAE、R2分别为0.020 22、0.014 33和0.992 31,能为火灾概率预测提供数据参考。 展开更多
关键词 多特征参数 鲸鱼优化算法 遗传算法 火灾概率预测 bp神经网络
下载PDF
采用改进BP-PID控制的机器人避障仿真研究
14
作者 吴静松 耿振铎 《中国工程机械学报》 北大核心 2024年第4期437-441,共5页
针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积... 针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积分-微分(PID)控制器和3层BP神经网络结构,利用BP神经网络的学习能力调整PID控制器参数。引用粒子群算法进行改进,通过改进粒子群算法在线优化BP-PID控制器,确保移动机器人BP-PID控制器收敛于全局最优值,从而使移动机器人避障效果更好。在不同环境中,采用Matlab软件对移动机器人避障效果进行仿真,比较改进前和改进后的移动机器人避障效果。结果显示:在不同环境中,改进前和改进后的BP-PID控制器均能使移动机器人安全地躲避障碍物;但是采用改进的粒子群算法优化BP-PID控制器,可以使移动机器人运动路径更短,迭代次数更少,搜索时间更短。采用改进BP-PID控制器,能够提高移动机器人避障过程中寻路速度,缩短行驶路径,效果更好。 展开更多
关键词 移动机器人 bp神经网络 PID控制器 改进粒子群算法 避障 仿真
下载PDF
基于SSA-BP的深基坑地表变形预测研究
15
作者 石强 程泷 +1 位作者 杨展 赵嘉 《江西建材》 2024年第6期174-176,179,共4页
文中采用麻雀搜索算法优化BP神经网络,对深圳市某在建地铁车站深基坑周围地表沉降监测点进行变形预测。通过对基坑地表变形监测点DBC16-4的118期监测数据进行训练学习,并与粒子群算法优化BP神经网络、遗传算法优化BP神经网络和标准BP神... 文中采用麻雀搜索算法优化BP神经网络,对深圳市某在建地铁车站深基坑周围地表沉降监测点进行变形预测。通过对基坑地表变形监测点DBC16-4的118期监测数据进行训练学习,并与粒子群算法优化BP神经网络、遗传算法优化BP神经网络和标准BP神经网络横向对比,验证了训练效果。结果表明,麻雀搜索算法对BP神经网络权重寻优速度较快,收敛精度更高,麻雀搜索算法优化BP神经网络模型预测平均相对误差仅为1.72%,拟合精度较其他算法更高,预测效果良好。 展开更多
关键词 深基坑 地表沉降 变形预测 bp神经网络 麻雀搜索算法
下载PDF
基于改进 PSO-BPNN 的拖拉机液压油品质监测
16
作者 李仲兴 朱方喜 +1 位作者 刘炳晨 郗少华 《中国农机化学报》 北大核心 2024年第10期140-146,共7页
为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉... 为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉机液压油品质监测试验装置,并依据试验装置采集与监测液压油粘度、介电常数和温度参数。然后,设计并搭建一种基于改进PSO-BPNN的拖拉机液压油品质监测模型,该模型利用正弦调整惯性权重的PSO算法优化BPNN的权值和阈值初始值,提高模型收敛效率。最后,为验证基于改进PSO-BPNN的液压油品质监测方法的可行性,与基于传统BPNN、标准PSO-BPNN的拖拉机液压油品质监测模型进行对比。结果表明,基于改进PSO-BPNN的拖拉机液压油品质监测方法具有较快的收敛速度,监测正确率达到97.78%,为优化拖拉机液压油品质监测方法提供参考。 展开更多
关键词 拖拉机 液压油品质 改进PSO算法 bp神经网络
下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
17
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子群优化算法 本征模函数
下载PDF
基于WOA-BP算法的自动压滤机脱水指标预测模型研究
18
作者 刘惠中 闻成钰 +2 位作者 曾聪 万小青 王朔 《有色金属(选矿部分)》 CAS 2024年第9期72-79,共8页
随着全球工业化的不断发展,矿山的开采规模正在不断扩大,导致矿物资源逐渐贫化,细杂等难选矿物资源越来越多。选矿磨矿粒度越来越细,导致矿物分选后产品的脱水过滤越来越困难。为保证后续运输和冶炼工序对精矿含水率的生产需求,需要使... 随着全球工业化的不断发展,矿山的开采规模正在不断扩大,导致矿物资源逐渐贫化,细杂等难选矿物资源越来越多。选矿磨矿粒度越来越细,导致矿物分选后产品的脱水过滤越来越困难。为保证后续运输和冶炼工序对精矿含水率的生产需求,需要使用自动压滤机对精矿进行高效率的脱水处理。在精矿的过滤脱水过程中,影响自动压滤机脱水效率的因素众多。为更好地对脱水过程及生产指标进行控制,基于鲸鱼算法WOA优化的BP神经网络构建了一种WOA-BP神经网络模型,以入料浓度、入料时间、压榨时间、风干时间等4项影响脱水指标的因素为输入因子,以滤饼含水率和单位面积每小时处理量为输出因子,建立了脱水指标的预测模型,并对比分析单一BP神经网络模型和WOA-BP神经网络模型。结论如下:WOA-BP预测模型对滤饼含水率和单位面积每小时处理量的平均绝对误差分别为4.98%、8.83%,均方根误差分别为0.86%、3.43%,与单一的BP神经网络预测模型相比,该预测模型预测误差明显小于单一BP神经网络预测模型,脱水指标的预测结果更接近实测值,具有较高精确度。利用构建的WOA-BP预测模型,可以有效预测压滤机的脱水过滤指标,为后续对脱水过程的控制进行优化奠定了基础。 展开更多
关键词 脱水效率 bp神经网络模型 鲸鱼算法 指标预测
下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别
19
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的bp神经网络
下载PDF
用于碳酸盐岩储层裂缝检测的GWO-CS-BP算法及应用研究
20
作者 李琼 张宇 石林坤 《石油物探》 CSCD 北大核心 2024年第4期833-845,共13页
碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)... 碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)与BP(back propagation)相结合形成的裂隙检测方法。将含裂缝信息的相干、曲率、倾角、方位角和构型张量等属性作为GWO-CS-BP神经网络的输入数据,在工区地质资料约束下根据测井数据获得裂缝发育水平评价指标,进而对研究区裂缝发育水平进行评价并划分等级。研究区碳酸盐岩储层裂缝发育水平检测结果表明,GWO-CS-BP算法能够综合各属性特点对研究区的裂缝发育水平特征进行二次误差控制,获得裂缝发育水平评价指标f s并将研究区裂缝发育水平划分为3个等级及4个裂缝存在区域。其中,当研究区裂缝发育水平参数的值适中时,即f s的值大于4.0且小于5.8时,C区域最有利于油气的聚集,高产井的分布数量较多。利用GWO-CS-BP算法对研究区的裂缝发育水平进行了精细评价,并得出裂隙发育水平参数f s,实现了GWO-CS算法改进的BP神经网络在裂缝检测中的有效应用。 展开更多
关键词 地震属性 裂缝检测 GWO-CS优化算法 bp神经网络 碳酸盐岩储层
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部