期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
1
作者 吕凯 陈静 +4 位作者 罗杰馨 何伟伟 黄建强 柴展 王曦 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期605-608,共4页
The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) de... The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) device, of which the supply voltages are all 1.2 V, are compared under different back gate biases by different figures of merit, such as cut-off frequency( fT), maximum frequency of oscillation( fmax), etc. Because of the lack of a back gate conducting channel, the drain conductance(gd) of TDBC transistor shows a smaller degradation than those of the others, and the trans-conductance(gm) of TDBC is almost independent of back gate bias. The values of fT of TDBC are also kept nearly constant under different back gate biases. However, RF performances of FB and TB each show a significant degradation when the back gate bias is larger than ~ 20 V. The results indicate that TDBC structures could effectively improve the back gate bias in RF performance. 展开更多
关键词 silicon-on-insulator(SOI) back gate bias tunnel diode body contact radio-frequency(RF)
下载PDF
Impact of back-gate bias on the hysteresis effect in partially depleted SOI MOSFETs
2
作者 罗杰馨 陈静 +4 位作者 周建华 伍青青 柴展 余涛 王曦 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期473-478,共6页
The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hystere... The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hysteresis has been developed to clarify the hysteresis characteristics.The fabricated devices show the positive and negative peaks in the I D hysteresis.The experimental results show that the I D hysteresis is sensitive to the back gate bias in 0.13-渭m PD SOI MOSFETs and does not vary monotonously with the back-gate bias.Based on the steady-state Shockley-Read-Hall(SRH) recombination theory,we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs. 展开更多
关键词 floating body effect hysteresis effect back gate bias partially depleted (PD) SOl
下载PDF
Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor 被引量:1
3
作者 唐晓雨 卢继武 +6 位作者 张睿 吴枉然 刘畅 施毅 黄子乾 孔月婵 赵毅 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期127-130,共4页
Ultra-thin-body (UTB) In0.53Ga0.47As-on-insulator (In0.53Ga0.47As-OI) structures with thicknesses of 8 and 15nm are realized by transferring epitaxially grown In0.53Ga0.47As layers to silicon substrates with 15-nm... Ultra-thin-body (UTB) In0.53Ga0.47As-on-insulator (In0.53Ga0.47As-OI) structures with thicknesses of 8 and 15nm are realized by transferring epitaxially grown In0.53Ga0.47As layers to silicon substrates with 15-nmthick A12 03 as a buried oxide by using the direct wafer bonding method. Back gate n-channel metal-oxidesemiconductor field-effect transistors (nMOSFETs) are fabricated by using these In0.53Ga0.47As-OI structures with excellent electrical characteristics. Positive bias temperature instability (PBTI) and hot carrier injection (HCI) characterizations are performed for the In0.53Ga0.47As-OI nMOSFETs. It is confirmed that the In0.53Ga0.47 As-OI nMOSFETs with a thinner body thickness suffer from more severe degradations under both PBTI and HCr stresses. Moreover, the different evolutions of the threshold voltage and the saturation current of the UTB In0.53Ga0.47As-OI nMOSFETs may be due to the slow border traps. 展开更多
关键词 As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor OI Positive bias Temperature Instability and Hot Carrier Injection of back gate Ultra-thin-body In Ga
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部