期刊文献+
共找到5,128篇文章
< 1 2 250 >
每页显示 20 50 100
Application of the back-error propagation artificial neural network(BPANN) on genetic variants in the PPAR-γ and RXR-α gene and risk of metabolic syndrome in a Chinese Han population 被引量:3
1
作者 Xu Zhao Kang Xu +11 位作者 Hui Shi Jinluo Cheng Jianhua Ma Yanqin Gao Qian Li Xinhua Ye Ying Lu Xiaofang Yu Juan Du Wencong Du Qing Ye Ling Zhou 《The Journal of Biomedical Research》 CAS 2014年第2期114-122,共9页
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga... This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome. 展开更多
关键词 back-error propagation artificial neural network (BPANN) metabolic syndrome peroxisome prolif-erators activated receptor-γ (PPAR) gene retinoid X receptor-α (RXR-α) gene ADIPONECTIN
下载PDF
A Review on Back-Propagation Neural Networks in the Application of Remote Sensing Image Classification 被引量:2
2
作者 Alaeldin Suliman Yun Zhang 《Journal of Earth Science and Engineering》 2015年第1期52-65,共14页
ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, th... ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, there is a noticeable variation in the achieved accuracies due to different network designs and implementations. Hence, researchers usually need to conduct several experimental trials before they can finalize the network design. This is a time consuming process which significantly reduces the effectiveness of using BPNNs and the final design may still not be optimal. Therefore, there is a need to see whether there are some common guidelines for effective design and implementation of BPNNs. With this aim in mind, this paper attempts to find and summarize the common guidelines suggested by different authors through literature review and discussion of the findings. To provide readers with background and contextual information, some ANN fundamentals are also introduced. 展开更多
关键词 Artificial neural networks back propagation CLASSIFICATION remote sensing.
下载PDF
DAMAGE DETECTION IN STRUCTURES USING MODIFIED BACK-PROPAGATION NEURAL NETWORKS 被引量:6
3
作者 Sima Yuzhou 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期358-370,共13页
A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of... A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection. 展开更多
关键词 neural network modified back-propagation damage detection modal testdata health monitoring
下载PDF
Sound Quality Prediction of Vehicle Interior Noise under Multiple Working Conditions Using Back-Propagation Neural Network Model 被引量:1
4
作者 Zutong Duan Yansong Wang Yanfeng Xing 《Journal of Transportation Technologies》 2015年第2期134-139,共6页
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve... This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions. 展开更多
关键词 Multiple Working Conditions NEURAL network back-propagation SOUND Quality PREDICTION ANNOYANCE
下载PDF
Preparation of ZrB_2-SiC Powders via Carbothermal Reduction of Zircon and Prediction of Product Composition by Back-Propagation Artificial Neural Network 被引量:1
5
作者 LIU Jianghao DU Shuang +2 位作者 LI Faliang ZHANG Haijun ZHANG Shaoweia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1062-1069,共8页
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ... Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy. 展开更多
关键词 ZrB2-SiC powders carbothermal reduction back-propagation artificial neural networks (BP-ANNs) composition prediction
下载PDF
A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines
6
作者 Xiyang Li Bin Cheng +2 位作者 Hui Zhang Xianghan Zhang Zhi Yun 《Energy Engineering》 EI 2021年第6期1869-1886,共18页
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi... With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades. 展开更多
关键词 Support vector machine back propagation neural network particle swarm optimization blade icing assessment
下载PDF
Detecting overlapping communities in networks via dominant label propagation 被引量:11
7
作者 孙鹤立 黄健斌 +2 位作者 田勇强 宋擒豹 刘怀亮 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期551-559,共9页
Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Prop... Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Propagation Algorithm(Abbreviated as DLPA), to detect communities in complex networks. The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously. Our algorithm is very efficient, since its computational complexity is almost linear to the number of edges in the network. Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks. 展开更多
关键词 overlapping community detection dominant label propagation complex network
下载PDF
Two-Layer Coupled Network Model for Topic Derivation in Public Opinion Propagation 被引量:8
8
作者 Yuexia Zhang Yixuan Feng 《China Communications》 SCIE CSCD 2020年第3期176-187,共12页
In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of pub... In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion. 展开更多
关键词 complex network PUBLIC OPINION propagation SEIR model
下载PDF
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
9
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 Linear motor (LM) Back propagation(BP) algorithm Neural network Anti-disturbance technology
下载PDF
Social Network Information Propagation Model Based on Individual Behavior 被引量:9
10
作者 Lejun Zhang Hongjie Li +1 位作者 Chunhui Zhao Xiaoying Lei 《China Communications》 SCIE CSCD 2017年第7期78-92,共15页
In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behav... In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring. 展开更多
关键词 social network information propagation individual behavior propagation delay
下载PDF
Detecting community structure using label propagation with consensus weight in complex network 被引量:3
11
作者 梁宗文 李建平 +1 位作者 杨帆 Athina Petropulu 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期594-601,共8页
Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community struc... Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions. 展开更多
关键词 label propagation algorithm community detection consensus cluster complex network
下载PDF
A Spatial-Temporal Network Perspective for the Propagation Dynamics of Air Traffic Delays 被引量:13
12
作者 Qing Cai Sameer Alam Vu N.Duong 《Engineering》 SCIE EI 2021年第4期452-464,共13页
Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magni... Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays. 展开更多
关键词 Air traffic Transport systems Delay propagation dynamics Spatial–temporal networks
下载PDF
Study on analytical noise propagation in convolutional neural network methods used in computed tomography imaging 被引量:7
13
作者 Xiao-Yue Guo Li Zhang Yu-Xiang Xing 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第6期114-127,共14页
Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because t... Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because their results are often difficult to interpret and are ambiguous in generalizability. Thus, quality assessments of the results obtained from a neural network are necessary to evaluate the neural network. Assessing the image quality of neural networks using traditional objective measurements is not appropriate because neural networks are nonstationary and nonlinear. In contrast, subjective assessments are trustworthy, although they are time-and energy-consuming for radiologists. Model observers that mimic subjective assessment require the mean and covariance of images, which are calculated from numerous image samples;however, this has not yet been applied to the evaluation of neural networks. In this study, we propose an analytical method for noise propagation from a single projection to efficiently evaluate convolutional neural networks(CNNs) in the CT imaging field. We propagate noise through nonlinear layers in a CNN using the Taylor expansion. Nesting of the linear and nonlinear layer noise propagation constitutes the covariance estimation of the CNN. A commonly used U-net structure is adopted for validation. The results reveal that the covariance estimation obtained from the proposed analytical method agrees well with that obtained from the image samples for different phantoms, noise levels, and activation functions, demonstrating that propagating noise from only a single projection is feasible for CNN methods in CT reconstruction. In addition, we use covariance estimation to provide three measurements for the qualitative and quantitative performance evaluation of U-net. The results indicate that the network cannot be applied to projections with high noise levels and possesses limitations in terms of efficiency for processing low-noise projections. U-net is more effective in improving the image quality of smooth regions compared with that of the edge. LeakyReLU outperforms Swish in terms of noise reduction. 展开更多
关键词 Noise propagation Convolutional neural network Image quality assessment
下载PDF
Distributed Resource Allocation in Ultra-Dense Networks via Belief Propagation 被引量:2
14
作者 CHEN Siyi XING Chengwen FEI Zesong 《China Communications》 SCIE CSCD 2015年第11期79-91,共13页
Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes p... Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results. 展开更多
关键词 RESOURCE ALLOCATION distributed optimization BELIEF propagation(BP) ultradense network
下载PDF
The Research on Social Networks Public Opinion Propagation Influence Models and Its Controllability 被引量:9
15
作者 Lejun Zhang Tong Wang +3 位作者 Zilong Jin Nan Su Chunhui Zhao Yongjun He 《China Communications》 SCIE CSCD 2018年第7期98-110,共13页
Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemination of information over the Internet, the traditional isolation and vaccination strategies ... Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemination of information over the Internet, the traditional isolation and vaccination strategies can no longer achieve satisfactory results. A positive guidance technology for public opinion diffusion is urgently needed. First, based on the analysis of influence network controllability and public opinion diffusion, a positive guidance technology is proposed and a new model that supports external control is established. Second, in combination with the influence network, a public opinion propagation influence network model is designed and a public opinion control point selection algorithm(POCDNSA) is proposed. Finally, An experiment verified that this algorithm can lead to users receiving the correct guidance quickly and accurately, reducing the impact of false public opinion information; the effect of CELF is no better than that of the POCDNSA algorithm. The main reason is that the former is completely based on the diffusion cascade information contained in the training data, but does not consider the specific situation of the network structure and the diffusion of public opinion information in the closed set. thus, the effectiveness and feasibility of the algorithm is proven. The findings of this article therefore provide useful insights for the implementation of public opinion control. 展开更多
关键词 social network public opinion propagation control influence network
下载PDF
A Predictive 6G Network with Environment Sensing Enhancement:From Radio Wave Propagation Perspective 被引量:5
16
作者 Gaofeng Nie Jianhua Zhang +6 位作者 Yuxiang Zhang Li Yu Zhen Zhang Yutong Sun Lei Tian Qixing Wang Liang Xia 《China Communications》 SCIE CSCD 2022年第6期105-122,共18页
In order to support the future digital society,sixth generation(6G)network faces the challenge to work efficiently and flexibly in a wider range of scenarios.The traditional way of system design is to sequentially get... In order to support the future digital society,sixth generation(6G)network faces the challenge to work efficiently and flexibly in a wider range of scenarios.The traditional way of system design is to sequentially get the electromagnetic wave propagation model of typical scenarios firstly and then do the network design by simulation offline,which obviously leads to a 6G network lacking of adaptation to dynamic environments.Recently,with the aid of sensing enhancement,more environment information can be obtained.Based on this,from radio wave propagation perspective,we propose a predictive 6G network with environment sensing enhancement,the electromagnetic wave propagation characteristics prediction enabled network(EWave Net),to further release the potential of 6G.To this end,a prediction plane is created to sense,predict and utilize the physical environment information in EWave Net to realize the electromagnetic wave propagation characteristics prediction timely.A two-level closed feedback workflow is also designed to enhance the sensing and prediction ability for EWave Net.Several promising application cases of EWave Net are analyzed and the open issues to achieve this goal are addressed finally. 展开更多
关键词 6G network electromagnetic waves propagation characteristics prediction environment information sensing enhancement
下载PDF
Link prediction in complex networks via modularity-based belief propagation 被引量:1
17
作者 赖大荣 舒欣 Christine Nardini 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期604-614,共11页
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existe... Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks. 展开更多
关键词 link prediction complex network belief propagation MODULARITY
下载PDF
Convergence Rate Analysis of Gaussian Belief Propagation for Markov Networks 被引量:2
18
作者 Zhaorong Zhang Minyue Fu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期668-673,共6页
Gaussian belief propagation algorithm(GaBP) is one of the most important distributed algorithms in signal processing and statistical learning involving Markov networks. It is well known that the algorithm correctly co... Gaussian belief propagation algorithm(GaBP) is one of the most important distributed algorithms in signal processing and statistical learning involving Markov networks. It is well known that the algorithm correctly computes marginal density functions from a high dimensional joint density function over a Markov network in a finite number of iterations when the underlying Gaussian graph is acyclic. It is also known more recently that the algorithm produces correct marginal means asymptotically for cyclic Gaussian graphs under the condition of walk summability(or generalised diagonal dominance). This paper extends this convergence result further by showing that the convergence is exponential under the generalised diagonal dominance condition,and provides a simple bound for the convergence rate. Our results are derived by combining the known walk summability approach for asymptotic convergence analysis with the control systems approach for stability analysis. 展开更多
关键词 BELIEF propagation DISTRIBUTED algorithm DISTRIBUTED estimation GAUSSIAN BELIEF propagation MARKOV networks
下载PDF
Fashion Color Forecasting by Applying an Improved Back Propagation Neural Network 被引量:2
19
作者 常丽霞 潘如如 高卫东 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期58-62,共5页
Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convi... Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convincing forecasting systems have been established. A prediction model for fashion color forecasting was established by applying an improved back propagation neural network (BPNN) model in this paper. Successive six-year fashion color palettes, released by INTERCOLOR, were used as learning information for the neural network to develop a reliable prediction model. Colors in the palettes were quantified by PANTONE color system. Additionally, performance of the established model was compared with other GM(1, 1) models. Results show that the improved BPNN model is suitable to predict future fashion color trend. 展开更多
关键词 fashion color back propagation neural network(BPNN) trend forecasting momentum factor
下载PDF
Simulation of phytoplankton biomass in Quanzhou Bay using a back propagation network model and sensitivity analysis for environmental variables 被引量:3
20
作者 郑伟 石洪华 +2 位作者 宋希坤 黄东仁 胡龙 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期843-851,共9页
Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicato... Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicators of coastal phytoplankton biomass were determined and monitoring data for the bay from 2008 was used to train,test and build a three-layer BP artificial neural network with multi-input and single-output.Ten water quality parameters were used to forecast phytoplankton biomass(measured as chlorophyll-a concentration).Correlation coefficient between biomass values predicted by the model and those observed was 0.964,whilst the average relative error of the network was-3.46% and average absolute error was 10.53%.The model thus has high level of accuracy and is suitable for analysis of the influence of aquatic environmental factors on phytoplankton biomass.A global sensitivity analysis was performed to determine the influence of different environmental indicators on phytoplankton biomass.Indicators were classified according to the sensitivity of response and its risk degree.The results indicate that the parameters most relevant to phytoplankton biomass are estuary-related and include pH,sea surface temperature,sea surface salinity,chemical oxygen demand and ammonium. 展开更多
关键词 SIMULATION phytoplankton biomass Quanzhou Bay back propagation (BP) network global sensitivity analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部