This paper documents design and modeling of a grid-connected emergency back-up power supply for medium power applications. Back-up power supplies are very important in regard to support electrical loads in the events ...This paper documents design and modeling of a grid-connected emergency back-up power supply for medium power applications. Back-up power supplies are very important in regard to support electrical loads in the events of grid power outage. However, grid-integration of a back-up power supply substantiates continual power transfer to the loads, especially to the critical loads, which should not suffer from power interruptions. Therefore, design and circuit modeling of switching converters based reliable grid-tied emergency back-up power supply are presented in this paper. There are a rectifier-link boost derived battery charging circuit and a 4-switch push-pull power inverter circuit which are controlled by high frequency pulse width modulation (PWM) signals. This paper presents a state averaging model and Laplace domain transfer function of the charging circuit and a switching converter model of the power inverter circuit. A changeover relay based transfer switch controls the power flow towards the utility loads. During off-grid situations, loads are fed power by the proposed inverter circuit and during on-grid situations, battery is charged by an ac-link rectifier-fed boost converter. However, there is a relay switching circuit to control the charging phenomenon of the battery. The proposed design is simulated in PLECS and the simulation results corroborate the reliability of the presented framework.展开更多
The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been...The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been carried out on bare seals, seal with conventional polytetrafluoroethylene(PTFE) back-up rings and seal with newly developed carbon composite back-up rings to study its behaviour under different operating conditions until failure. Experiments were conducted by varying annular gap ranging from 0.3 to 0.5 mm, oil temperature from 30 ℃ to 70 ℃ and rate of pressure rise from 600 to 2400 MPa/s. Significant enhancement in seal life was observed with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.展开更多
文摘This paper documents design and modeling of a grid-connected emergency back-up power supply for medium power applications. Back-up power supplies are very important in regard to support electrical loads in the events of grid power outage. However, grid-integration of a back-up power supply substantiates continual power transfer to the loads, especially to the critical loads, which should not suffer from power interruptions. Therefore, design and circuit modeling of switching converters based reliable grid-tied emergency back-up power supply are presented in this paper. There are a rectifier-link boost derived battery charging circuit and a 4-switch push-pull power inverter circuit which are controlled by high frequency pulse width modulation (PWM) signals. This paper presents a state averaging model and Laplace domain transfer function of the charging circuit and a switching converter model of the power inverter circuit. A changeover relay based transfer switch controls the power flow towards the utility loads. During off-grid situations, loads are fed power by the proposed inverter circuit and during on-grid situations, battery is charged by an ac-link rectifier-fed boost converter. However, there is a relay switching circuit to control the charging phenomenon of the battery. The proposed design is simulated in PLECS and the simulation results corroborate the reliability of the presented framework.
文摘The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been carried out on bare seals, seal with conventional polytetrafluoroethylene(PTFE) back-up rings and seal with newly developed carbon composite back-up rings to study its behaviour under different operating conditions until failure. Experiments were conducted by varying annular gap ranging from 0.3 to 0.5 mm, oil temperature from 30 ℃ to 70 ℃ and rate of pressure rise from 600 to 2400 MPa/s. Significant enhancement in seal life was observed with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.