Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological st...Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.展开更多
In order to promote the thermostability of a-diimine nickel complex by ligand backbone structure,a series of α-diimine nickel complexes with substituents on acenaphthequinone backbone were synthesized and used as cat...In order to promote the thermostability of a-diimine nickel complex by ligand backbone structure,a series of α-diimine nickel complexes with substituents on acenaphthequinone backbone were synthesized and used as catalysts for ethylene polymerization.When the hydroxyethyl phenoxyl group was introduced to the acenaphthequinone-backbone,the thermal stability and activity of the catalyst could be significantly improved.The catalytic activity of complex C2[5-(4-(2-hydroxyethyl)phenoxyl)-N,N-bis(2,6-diisopropyl)acenaphthylene-1,2-diimine]nickel(Ⅱ)dibromide with isopropyl substituents on N-aryl reached 8.2×10^6g/(molNi·h)at 70℃and 2 MPa.The activity of[5-(4-(2-hydroxyethyl)phenoxyl)-N,N-bis(2,6-dibenzhydryl-4-menthylphenyl)acenaphthylene-1,2-diimine]nickel(Ⅱ)dibromide(C3)still maintained at 6.7×10^5 g/(molNi·h)at 120℃.Compared with C3 containing bulky dibenzhydryl substituents,the activity of C2 was sensitive to the change of the polymerization pressure.However,the polyethylenes obtained from complex C3 had lower branching density.Meanwhile,the molecular weight could reach 971 kg/mol,which is almost 5 times as much as that of the polyethylene obtained from complex C2.展开更多
基金the financial support from the National Natural Science Foundation of China(22078272&22278340)。
文摘Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.
基金the National Natural Science Foundation of China(Nos.21004017 and 21004043)the Natural Science Foundation of Hebei Provinee(No.B2015202049).
文摘In order to promote the thermostability of a-diimine nickel complex by ligand backbone structure,a series of α-diimine nickel complexes with substituents on acenaphthequinone backbone were synthesized and used as catalysts for ethylene polymerization.When the hydroxyethyl phenoxyl group was introduced to the acenaphthequinone-backbone,the thermal stability and activity of the catalyst could be significantly improved.The catalytic activity of complex C2[5-(4-(2-hydroxyethyl)phenoxyl)-N,N-bis(2,6-diisopropyl)acenaphthylene-1,2-diimine]nickel(Ⅱ)dibromide with isopropyl substituents on N-aryl reached 8.2×10^6g/(molNi·h)at 70℃and 2 MPa.The activity of[5-(4-(2-hydroxyethyl)phenoxyl)-N,N-bis(2,6-dibenzhydryl-4-menthylphenyl)acenaphthylene-1,2-diimine]nickel(Ⅱ)dibromide(C3)still maintained at 6.7×10^5 g/(molNi·h)at 120℃.Compared with C3 containing bulky dibenzhydryl substituents,the activity of C2 was sensitive to the change of the polymerization pressure.However,the polyethylenes obtained from complex C3 had lower branching density.Meanwhile,the molecular weight could reach 971 kg/mol,which is almost 5 times as much as that of the polyethylene obtained from complex C2.