Soil backfilling and compaction are often involved in urban construction projects like the burying of power cables.The thermal conductance of backfill soil is therefore of great interest.To investigate the thermal con...Soil backfilling and compaction are often involved in urban construction projects like the burying of power cables.The thermal conductance of backfill soil is therefore of great interest.To investigate the thermal conductivity variation of compacted backfill soil,10 typical soils sampled in Zhejiang Province of China with moisture contents of 0%–25%were fully compacted according to the Proctor compaction test method and then subjected to thermal conductivity measurement using the thermal probe method at 20℃.The particle size distribution and the chemical composition of the soil samples were characterized to analyze their effects on thermal conductivity.The results showed that the maximum thermal conductivity of fully compacted soils generally exceeds 1.9 W/(m·K)and is 20%–50%higher than that of uncompacted soils.With increasing moisture content,soil thermal conductivity and dry bulk density first increase and then remain unchanged or decrease slowly;the critical moisture content is greater than 20%in most cases.Overall,the critical moisture content of soils with large particle size is lower than that of those with small particle size.Quartz has the highest thermal conductivity in the soil solid phase,and the mass percentage of quartz for most soils in this study is more than 50%,while that for yellow soil is less than 30%,which leads to the thermal conductivity of the former being nearly twice as great as that of the latter in most circumstances.Based on regression analysis,with moisture content and dry bulk density as the independent parameters,the prediction formulae for the thermal conductivity of two categories of compacted backfill soils are proposed for practical applications.展开更多
Mechanically stabilized earth(MSE)retaining walls are popular for highway bridge structures.They have precast concrete panels attached to earth reinforcement.The panels are designed to have some lateral movement.Howev...Mechanically stabilized earth(MSE)retaining walls are popular for highway bridge structures.They have precast concrete panels attached to earth reinforcement.The panels are designed to have some lateral movement.However,in some cases,excessive movement and even complete dislocation of the panels have been observed.In this study,3-D numerical modeling involving an existing MSE wall was undertaken to investigate various wall parameters.The effects of pore pressure,soil cohesion,earth reinforcement type and length,breakage/slippage of reinforcement and concrete strength,were examined.Results showed that the wall movement is affected by soil pore pressure and reinforcement integrity and length,and unaffected by concrete strength.Soil cohesion has a minor effect,while the movement increased by 13–20 mm for flexible geogrid reinforced walls compared with the steel grid walls.The steel grid stresses were below yielding,while the geogrid experienced significant stresses without rupture.Geogrid reinforcement may be used taking account of slippage resistance and wall movement.If steel grid is used,non-cohesive soil is recommended to minimize corrosion.Proper soil drainage is important for control of pore pressure.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFC1805701)。
文摘Soil backfilling and compaction are often involved in urban construction projects like the burying of power cables.The thermal conductance of backfill soil is therefore of great interest.To investigate the thermal conductivity variation of compacted backfill soil,10 typical soils sampled in Zhejiang Province of China with moisture contents of 0%–25%were fully compacted according to the Proctor compaction test method and then subjected to thermal conductivity measurement using the thermal probe method at 20℃.The particle size distribution and the chemical composition of the soil samples were characterized to analyze their effects on thermal conductivity.The results showed that the maximum thermal conductivity of fully compacted soils generally exceeds 1.9 W/(m·K)and is 20%–50%higher than that of uncompacted soils.With increasing moisture content,soil thermal conductivity and dry bulk density first increase and then remain unchanged or decrease slowly;the critical moisture content is greater than 20%in most cases.Overall,the critical moisture content of soils with large particle size is lower than that of those with small particle size.Quartz has the highest thermal conductivity in the soil solid phase,and the mass percentage of quartz for most soils in this study is more than 50%,while that for yellow soil is less than 30%,which leads to the thermal conductivity of the former being nearly twice as great as that of the latter in most circumstances.Based on regression analysis,with moisture content and dry bulk density as the independent parameters,the prediction formulae for the thermal conductivity of two categories of compacted backfill soils are proposed for practical applications.
基金The study reported in this paper was performed through a grant from the Texas Department of Transportation(TxDOT).
文摘Mechanically stabilized earth(MSE)retaining walls are popular for highway bridge structures.They have precast concrete panels attached to earth reinforcement.The panels are designed to have some lateral movement.However,in some cases,excessive movement and even complete dislocation of the panels have been observed.In this study,3-D numerical modeling involving an existing MSE wall was undertaken to investigate various wall parameters.The effects of pore pressure,soil cohesion,earth reinforcement type and length,breakage/slippage of reinforcement and concrete strength,were examined.Results showed that the wall movement is affected by soil pore pressure and reinforcement integrity and length,and unaffected by concrete strength.Soil cohesion has a minor effect,while the movement increased by 13–20 mm for flexible geogrid reinforced walls compared with the steel grid walls.The steel grid stresses were below yielding,while the geogrid experienced significant stresses without rupture.Geogrid reinforcement may be used taking account of slippage resistance and wall movement.If steel grid is used,non-cohesive soil is recommended to minimize corrosion.Proper soil drainage is important for control of pore pressure.