Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling mate...Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling material under the geological condition can be obtained. Based on the characteristic of overlying strata movement in backfill mining, a model of roof thin plate is established. By introducing the stress-strain relation in compaction process into the model and using RIZT method to analyze the bending deformation of roof, the bending deflection and stress distribution can be obtained. The results show that the maximum roof subsidence and maximum tensile stress occurring at the center are 255 mm and5 MPa, respectively. Tensile fracture of roof under the geological condition of Dongping Mine did not occur. The dynamic measurement results of roof in Dongping Mine verify the theoretical result from the aforementioned model, thereby suggesting the roof mechanical model is reliable. The roof thin plate model based on the compaction characteristic of backfilling material in this study is of importance to research on backfill mining theories and application of backfilling material characteristics.展开更多
The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backf...The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backfill effect in solid backfill mining. To design the backfill-mining mass ratio in a solid backfill mining panel, the backfill-mining mass ratio was defined on the basis of the basic principle of solid backfill mining. In addition, the density-stress relationship of backfill materials under compaction was obtained for five types of materials to derive a design formula for backfill-mining mass ratio. Moreover, the 6304-1 backfill panel under the large-scale dam of Ji′ning No. 3 coal mine was taken as an engineering case to design the backfill-mining mass ratio. In this way, it is found that the designed backfill-mining mass ratio is 1.22, while the mean value of the measured backfill-mining mass ratio is 1.245. Besides, the maximum roof subsidence is only 340 mm which effectively guarantees the backfill effect in the panel and control of strata movement and surface subsidence.展开更多
The use of materials from waste in buildings compensates for the lack of natural resources, solves the problem of waste management and provides an altern<span style="font-family:Verdana;">ative techniq...The use of materials from waste in buildings compensates for the lack of natural resources, solves the problem of waste management and provides an altern<span style="font-family:Verdana;">ative technique for protection of the environment. There are a lar</span><span style="font-family:Verdana;">ge number of industrial wastes that are used for full or partial replacement of raw materials in some construction materials. This review assesses mining waste in concrete as a substitute for aggregates and cement;in fired bricks as a substitute for soil;and in road backfill as a substitute for soil. This paper reviews some mining tailings, mine waste rocks and some slags obtained in the exploitation and/or processing of some ores including iron, gold, lead, phosphate, copper, coal, etc. Different physical properties, mechanical properties, chemical properties, heavy metal content, mineralogic composition, geotechnical properties and environmental properties (leaching test) of the mine wastes were examined. The physical, mechanical and environmental properties of the materials obtained by substitution of raw materials by mine waste were examined and compared to reference materials. Mining waste in cementitious materials offers good compressive strengths, while the porosity of the concrete and/or mortar is a factor influencing its toxicity. As for the waste in fired bricks, fired at a temperature of 900°</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> or more, it offers convincing compressive and flexural strengths. The few research studies obtained on the use of mining waste in road embankments have shown that mining waste can be used as a sub-base layer and backfill as long as it is not toxic. In addition, several other mining wastes require special attention as substitutes for raw materials in construction materials, such as coltan, cobalt.</span></span></span></span>展开更多
Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and o...Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings.展开更多
Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere.A multi-barrier system typically comprises the natural geological barrier provided by th...Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere.A multi-barrier system typically comprises the natural geological barrier provided by the repository host rock e in our case the Opalinus Clay e and an engineered barrier system(EBS).The Swiss repository concept for spent fuel and vitrified high-level waste(HLW)consists of waste canisters,which are emplaced horizontally in the middle of an emplacement gallery and are separated from the gallery wall by granular backfill material(GBM).We describe here a selection of five in-situ experiments where characteristic hydro-mechanical(HM)and thermo-hydro-mechanical(THM)processes have been observed.The first example is a coupled HM and mine-by test where the evolution of the excavation damaged zone(EDZ)was monitored around a gallery in the Opalinus Clay(ED-B experiment).Measurements of pore-water pressures and convergences due to stress redistribution during excavation highlighted the HM behaviour.The same measurements were subsequently carried out in a heater test(HE-D)where we were able to characterise the Opalinus Clay in terms of its THM behaviour.These yielded detailed data to better understand the THM behaviours of the granular backfill and the natural host rock.For a presentation of the Swiss concept for HLW storage,we designed three demonstration experiments that were subsequently implemented in the Mont Terri rock laboratory:(1)the engineered barrier(EB)experiment,(2)the in-situ heater test on key-THM processes and parameters(HE-E)experiment,and(3)the full-scale emplacement(FE)experiment.The first demonstration experiment has been dismantled,but the last two ones are on-going.展开更多
This paper analyzed the pore structure, quantified the pore fractal dimension, calculated the grading index(GI) of mixed aggregate, and studied the relationship among GI, pore structure, and strength to describe the c...This paper analyzed the pore structure, quantified the pore fractal dimension, calculated the grading index(GI) of mixed aggregate, and studied the relationship among GI, pore structure, and strength to describe the cross-scale characteristics of backfill, which is made from stone powder and cemented tailing. A series of experiments were conducted on stone powder cement tailings backfill(SPCTB). The GI formulas for mixed aggregates, containing stone powder and tailings, were derived based on the Füller theory. The nuclear magnetic resonance(NMR) fractal dimensions of backfills were derived using fractal geometry principles. Compared to the mesopore and macropore fractal dimensions, the correlation between micropore fractal dimension and macro-properties in terms of NMR porosity, pore structure complexity, uniaxial compression strength(UCS), and GI is the most significant. Macropore fractal dimension is generally correlated with UCS and GI and the other properties such as the shape of mixed aggregates also have an impact on fractal dimension. However, mesopore fractal dimension has no obvious relationship with macro-properties. Finally, the relationship between GI and UCS was studied, which contributed to improving backfill’s strength and optimizing gradation.展开更多
The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing ...The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing the tailing density and reducing the binder dosage, or the manner of cutting down the tailing density and gaining the binder dosage are taken to guarantee the strength of backfill body. The problem that should be solved is how to determine the tailing density and the binder dosage rationally. This paper tries to realize the correct selection of the tailing density and the binder dosage in computer with the method of fuzzy mathematics.展开更多
: This paper presents the results of laboratory testing on a heavily compacted sand-bentonite mixture. To measure the soil-water retention curve (SWRC) of the mixture over a large range of suction, a pressure plate...: This paper presents the results of laboratory testing on a heavily compacted sand-bentonite mixture. To measure the soil-water retention curve (SWRC) of the mixture over a large range of suction, a pressure plate apparatus and filter papers were used. The obtained SWRC shows that the measurements via the two methods consistently agree with each other. By using a suction-controlled oedometer for unsaturated soils, a series of one-dimensional compression tests were performed on the unsaturated compacted sand-bentonite mixture at different constant suctions. The testing results indicate that the yield stress increases and compression index decreases with the increase of imposed suction. The results also demonstrate that the mixture wetted to saturation and subsequently dried to a certain suction level has a lower yield stress than that wetted directly to the same suction.展开更多
An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature differ...An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m&#183;K) and 1.754 W/(m&#183;K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m&#183;K) and 1.486 W/(m&#183;K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.展开更多
It is critical for the material to be of active supporting capacity before initial collapse ot mare root wltn supermgn water material backfill mining, and the maximum bending moment should be first calculated in order...It is critical for the material to be of active supporting capacity before initial collapse ot mare root wltn supermgn water material backfill mining, and the maximum bending moment should be first calculated in order to determine the initial collapse span. In the light of principal of virtual work, the simple expression of deflection, bending moment of elastic clamped plate were deduced under the condition of vertical uniform distributed load, horizontal pressure and supporting by elastic foundation, and then, the maximal bending moment expression was derived too. At the same time, the influence degree on square clamped plate by adding horizontal pressure and elastic foundation were analyzed. The results show that the effect of horizontal pressure on maximal bending moment can be ignored when the value of horizontal pressure is two orders of magni- tude less than that of coeificient of elastic stiffness existing elastic foundation.展开更多
A methodology for identifying and calibrating the material parameters for a coupled hydro-mechanical problem is presented in this pape r.For validation purpose,a laboratory-based water infiltration test was numericall...A methodology for identifying and calibrating the material parameters for a coupled hydro-mechanical problem is presented in this pape r.For validation purpose,a laboratory-based water infiltration test was numerically simulated using finite element method(FEM).The test was conducted using a self-designed column-type experimental device,which mimicked the wetting process of a candidate backfill material in a nuclear waste repository.The real-time measurements of key state variables(e.g.water content,relative humidity,temperature,and total stresses)were performed with the monitoring sensors along the height of cylindrical soil sample.For numerical simulation,the modified Barcelona Basic Model(BBM)along with soil-water retention model for compacted bentonite was used.It shows that the identified model parameters successfully captured the moisture migration process under an applied hydraulic gradient in a bentonite-based compacted soil sample.A comparison between the measured and predicted values of total stresses both in axial and lateral directions along with other state variables revealed that heterogeneous moisture content was distributed along the hydration-path,resulting in non-uniform stress-deformation characteristics of soil.展开更多
As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performa...As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.展开更多
Na-type bentonite is commonly used as a tunnel backfilling material to prevent groundwater and radionuclide migration during the construction of a geological disposal system for high-level radioactive waste in Japan. ...Na-type bentonite is commonly used as a tunnel backfilling material to prevent groundwater and radionuclide migration during the construction of a geological disposal system for high-level radioactive waste in Japan. However, host rock fractures with strong water flow can develop groundwater paths in the backfilling material. Especially, the alteration to Ca-type bentonite causes degradation of the barrier performance and accelerates the development of groundwater paths. Additionally, using cementitious materials gradually changes pH between 13 and 8. High alkaline groundwater results in high solubility of silicic acid; therefore, silicic acid is eluted from the host rock. Downstream, in the low alkaline area, the groundwater becomes supersaturated in silicic acid. This acid is deposited on Ca-type bentonite, thus leading to the clogging of the groundwater paths. In the present study, we investigate the silicic acid deposition rate on Ca-type bentonite under 288-323 K for depths greater or equal to 500 m. The results indicate that temperature does not affect the silicic acid deposition rate up to 323 K. However, in this temperature range, the deposition of silicic acid on Ca-type bentonite in backfilled tunnels results in clogging of the flow paths.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
基金financial assistance provided by the National Natural Science Foundation of China(No.51304206)China Postdoctoral Science Foundation funded project(No.2015M580492)
文摘Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling material under the geological condition can be obtained. Based on the characteristic of overlying strata movement in backfill mining, a model of roof thin plate is established. By introducing the stress-strain relation in compaction process into the model and using RIZT method to analyze the bending deformation of roof, the bending deflection and stress distribution can be obtained. The results show that the maximum roof subsidence and maximum tensile stress occurring at the center are 255 mm and5 MPa, respectively. Tensile fracture of roof under the geological condition of Dongping Mine did not occur. The dynamic measurement results of roof in Dongping Mine verify the theoretical result from the aforementioned model, thereby suggesting the roof mechanical model is reliable. The roof thin plate model based on the compaction characteristic of backfilling material in this study is of importance to research on backfill mining theories and application of backfilling material characteristics.
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金Project(51421003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2014ZDPY02)supported by the Fundamental Research Funds for the Central Universities,China
文摘The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backfill effect in solid backfill mining. To design the backfill-mining mass ratio in a solid backfill mining panel, the backfill-mining mass ratio was defined on the basis of the basic principle of solid backfill mining. In addition, the density-stress relationship of backfill materials under compaction was obtained for five types of materials to derive a design formula for backfill-mining mass ratio. Moreover, the 6304-1 backfill panel under the large-scale dam of Ji′ning No. 3 coal mine was taken as an engineering case to design the backfill-mining mass ratio. In this way, it is found that the designed backfill-mining mass ratio is 1.22, while the mean value of the measured backfill-mining mass ratio is 1.245. Besides, the maximum roof subsidence is only 340 mm which effectively guarantees the backfill effect in the panel and control of strata movement and surface subsidence.
文摘The use of materials from waste in buildings compensates for the lack of natural resources, solves the problem of waste management and provides an altern<span style="font-family:Verdana;">ative technique for protection of the environment. There are a lar</span><span style="font-family:Verdana;">ge number of industrial wastes that are used for full or partial replacement of raw materials in some construction materials. This review assesses mining waste in concrete as a substitute for aggregates and cement;in fired bricks as a substitute for soil;and in road backfill as a substitute for soil. This paper reviews some mining tailings, mine waste rocks and some slags obtained in the exploitation and/or processing of some ores including iron, gold, lead, phosphate, copper, coal, etc. Different physical properties, mechanical properties, chemical properties, heavy metal content, mineralogic composition, geotechnical properties and environmental properties (leaching test) of the mine wastes were examined. The physical, mechanical and environmental properties of the materials obtained by substitution of raw materials by mine waste were examined and compared to reference materials. Mining waste in cementitious materials offers good compressive strengths, while the porosity of the concrete and/or mortar is a factor influencing its toxicity. As for the waste in fired bricks, fired at a temperature of 900°</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> or more, it offers convincing compressive and flexural strengths. The few research studies obtained on the use of mining waste in road embankments have shown that mining waste can be used as a sub-base layer and backfill as long as it is not toxic. In addition, several other mining wastes require special attention as substitutes for raw materials in construction materials, such as coltan, cobalt.</span></span></span></span>
基金the Key Research and Development Program of Hubei Province(2022BCA071)the Wuhan Science and Technology Bureau(2022020801020269).
文摘Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings.
文摘Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere.A multi-barrier system typically comprises the natural geological barrier provided by the repository host rock e in our case the Opalinus Clay e and an engineered barrier system(EBS).The Swiss repository concept for spent fuel and vitrified high-level waste(HLW)consists of waste canisters,which are emplaced horizontally in the middle of an emplacement gallery and are separated from the gallery wall by granular backfill material(GBM).We describe here a selection of five in-situ experiments where characteristic hydro-mechanical(HM)and thermo-hydro-mechanical(THM)processes have been observed.The first example is a coupled HM and mine-by test where the evolution of the excavation damaged zone(EDZ)was monitored around a gallery in the Opalinus Clay(ED-B experiment).Measurements of pore-water pressures and convergences due to stress redistribution during excavation highlighted the HM behaviour.The same measurements were subsequently carried out in a heater test(HE-D)where we were able to characterise the Opalinus Clay in terms of its THM behaviour.These yielded detailed data to better understand the THM behaviours of the granular backfill and the natural host rock.For a presentation of the Swiss concept for HLW storage,we designed three demonstration experiments that were subsequently implemented in the Mont Terri rock laboratory:(1)the engineered barrier(EB)experiment,(2)the in-situ heater test on key-THM processes and parameters(HE-E)experiment,and(3)the full-scale emplacement(FE)experiment.The first demonstration experiment has been dismantled,but the last two ones are on-going.
基金Project(41672298)supported by the National Natural Science Foundation of ChinaProject(2017YFC0602901)supported by the National Key Research and Development Program of China。
文摘This paper analyzed the pore structure, quantified the pore fractal dimension, calculated the grading index(GI) of mixed aggregate, and studied the relationship among GI, pore structure, and strength to describe the cross-scale characteristics of backfill, which is made from stone powder and cemented tailing. A series of experiments were conducted on stone powder cement tailings backfill(SPCTB). The GI formulas for mixed aggregates, containing stone powder and tailings, were derived based on the Füller theory. The nuclear magnetic resonance(NMR) fractal dimensions of backfills were derived using fractal geometry principles. Compared to the mesopore and macropore fractal dimensions, the correlation between micropore fractal dimension and macro-properties in terms of NMR porosity, pore structure complexity, uniaxial compression strength(UCS), and GI is the most significant. Macropore fractal dimension is generally correlated with UCS and GI and the other properties such as the shape of mixed aggregates also have an impact on fractal dimension. However, mesopore fractal dimension has no obvious relationship with macro-properties. Finally, the relationship between GI and UCS was studied, which contributed to improving backfill’s strength and optimizing gradation.
文摘The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing the tailing density and reducing the binder dosage, or the manner of cutting down the tailing density and gaining the binder dosage are taken to guarantee the strength of backfill body. The problem that should be solved is how to determine the tailing density and the binder dosage rationally. This paper tries to realize the correct selection of the tailing density and the binder dosage in computer with the method of fuzzy mathematics.
基金Supported by the Innovative Foundation for Graduate Students at Shanghai University of China(SHUCX080168)the National Science Foundationof China(10972130)
文摘: This paper presents the results of laboratory testing on a heavily compacted sand-bentonite mixture. To measure the soil-water retention curve (SWRC) of the mixture over a large range of suction, a pressure plate apparatus and filter papers were used. The obtained SWRC shows that the measurements via the two methods consistently agree with each other. By using a suction-controlled oedometer for unsaturated soils, a series of one-dimensional compression tests were performed on the unsaturated compacted sand-bentonite mixture at different constant suctions. The testing results indicate that the yield stress increases and compression index decreases with the increase of imposed suction. The results also demonstrate that the mixture wetted to saturation and subsequently dried to a certain suction level has a lower yield stress than that wetted directly to the same suction.
基金Supported by the National Natural Science Foundation of China(No.41272263)
文摘An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m&#183;K) and 1.754 W/(m&#183;K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m&#183;K) and 1.486 W/(m&#183;K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.
基金Supported by the National Natural Science Foundation of China (41071273) the Special Research Fund for the Doctoral Program of Higher Education of China (200090095110002)
文摘It is critical for the material to be of active supporting capacity before initial collapse ot mare root wltn supermgn water material backfill mining, and the maximum bending moment should be first calculated in order to determine the initial collapse span. In the light of principal of virtual work, the simple expression of deflection, bending moment of elastic clamped plate were deduced under the condition of vertical uniform distributed load, horizontal pressure and supporting by elastic foundation, and then, the maximal bending moment expression was derived too. At the same time, the influence degree on square clamped plate by adding horizontal pressure and elastic foundation were analyzed. The results show that the effect of horizontal pressure on maximal bending moment can be ignored when the value of horizontal pressure is two orders of magni- tude less than that of coeificient of elastic stiffness existing elastic foundation.
基金the German Research Foundation(DFG)for the financial support(Grant No.SCHA 675/17-1)。
文摘A methodology for identifying and calibrating the material parameters for a coupled hydro-mechanical problem is presented in this pape r.For validation purpose,a laboratory-based water infiltration test was numerically simulated using finite element method(FEM).The test was conducted using a self-designed column-type experimental device,which mimicked the wetting process of a candidate backfill material in a nuclear waste repository.The real-time measurements of key state variables(e.g.water content,relative humidity,temperature,and total stresses)were performed with the monitoring sensors along the height of cylindrical soil sample.For numerical simulation,the modified Barcelona Basic Model(BBM)along with soil-water retention model for compacted bentonite was used.It shows that the identified model parameters successfully captured the moisture migration process under an applied hydraulic gradient in a bentonite-based compacted soil sample.A comparison between the measured and predicted values of total stresses both in axial and lateral directions along with other state variables revealed that heterogeneous moisture content was distributed along the hydration-path,resulting in non-uniform stress-deformation characteristics of soil.
基金sponsored by the National Natural Science Foundation of China(Grant No.51974192)the Distinguished Youth Funds of National Natural Science Foundation of China(Grant No.51925402)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering Project(2021SX-TD001).
文摘As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.
文摘Na-type bentonite is commonly used as a tunnel backfilling material to prevent groundwater and radionuclide migration during the construction of a geological disposal system for high-level radioactive waste in Japan. However, host rock fractures with strong water flow can develop groundwater paths in the backfilling material. Especially, the alteration to Ca-type bentonite causes degradation of the barrier performance and accelerates the development of groundwater paths. Additionally, using cementitious materials gradually changes pH between 13 and 8. High alkaline groundwater results in high solubility of silicic acid; therefore, silicic acid is eluted from the host rock. Downstream, in the low alkaline area, the groundwater becomes supersaturated in silicic acid. This acid is deposited on Ca-type bentonite, thus leading to the clogging of the groundwater paths. In the present study, we investigate the silicic acid deposition rate on Ca-type bentonite under 288-323 K for depths greater or equal to 500 m. The results indicate that temperature does not affect the silicic acid deposition rate up to 323 K. However, in this temperature range, the deposition of silicic acid on Ca-type bentonite in backfilled tunnels results in clogging of the flow paths.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.