The background absorption of Lu and Yb matrices was studied. The experimental results show that there is a significantly wavelength-dependent. The effects of ashing temperature, heating mode, atomization temperature, ...The background absorption of Lu and Yb matrices was studied. The experimental results show that there is a significantly wavelength-dependent. The effects of ashing temperature, heating mode, atomization temperature, recording time and matrix modifiers affecting the non-specific absorption of Lu and Yb matrices were discussed.展开更多
In general, biological organisms have the ability to absorb a specific element selectively. Holcombe and his co-workers reported that copper, nickel and cobalt could be separated from riverine and sea-water samples an...In general, biological organisms have the ability to absorb a specific element selectively. Holcombe and his co-workers reported that copper, nickel and cobalt could be separated from riverine and sea-water samples and cadmium from river water samples by unicellular green algae and were determined by slurry GFAAS. Dar-展开更多
Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concent...Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concentration of nitrite nitrogen in the absorption solution was determined by spectrophotometry and gas phase molecular absorption spectrometry to obtain the concentration of nitrite nitrogen in flue gas.The experiments show that both methods are accurate and reliable.展开更多
Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range...Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range from 190 to 700 nm. The molecular absorption spectrometry is often used for the determination of nonmetallic elements. Syty et al. used vapor molecular absorption spectrometry(VMAS) to determine the sulfur dioxide and sulfide, in which a hydrogen hollow cathode lamp was used as a continuum source to determine SO;at 210 nm and a deuterium arc展开更多
In this paper,we present a new method for seismic stratigraphic absorption compensation based on the adaptive molecular decomposition.Using this method,we can remove most of the effects resulting from wavelets truncat...In this paper,we present a new method for seismic stratigraphic absorption compensation based on the adaptive molecular decomposition.Using this method,we can remove most of the effects resulting from wavelets truncation and interference which usually exist in the common time-frequency absorption compensation method.Based on the assumption that the amplitude spectrum of the source wavelet is smooth,we first construct a set of adaptive Gabor frames based on the time-variant properties of the seismic signal to transform the signal into the time-frequency domain and then extract the slowly varying component(the wavelet's time-varying amplitude spectrum) in each window in the timefrequency domain.Then we invert the absorption compensation filter parameters with an objective function defined using the correlation coefficients in each window to get the corresponding compensation filters.Finally,we use these filters to compensate the timefrequency spectrum in each window and then transform the time-frequency spectrum to the time domain to obtain the absorption-compensated signal.By using adaptive molecular decomposition,this method can adapt to isolated and overlapped seismic signals from the complex layers in the inhomogeneous viscoelastic medium.The viability of the method is verified by synthetic and real data sets.展开更多
The effects of background absorption of TmCl 3 and Tm(NO 3) 3 matrices in graphite furnace atomic absorption spectrometry(GFAAS) were inverstigated. The experiments demonstrated that the background absorption of Tm...The effects of background absorption of TmCl 3 and Tm(NO 3) 3 matrices in graphite furnace atomic absorption spectrometry(GFAAS) were inverstigated. The experiments demonstrated that the background absorption of Tm matrices is obviously wavelength dependent. The background absorption of TmCl 3 is larger than that of Tm(NO 3) 3, especially in short wavelength region. The background absorption of TmCl 3 is decreased significantly as the ashing temperature increases and that of Tm matrices is eliminated completely at about 1900 ℃. The time distribution of background signal is related to the atomization temperature and the heating mode of atomization HNO 3 can be used to reduce the background absorption of TmCl 3 matrix.展开更多
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil...Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.展开更多
The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, at...The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.展开更多
Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electroma...Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of"Big Data".Herein,drawing wisdom and inspiration from nature,an eco-mimetic nanoarchitecture is constructed for the first time,highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response.Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition(oMLD),providing a new cognition to frequency-selective microwave absorption.The optimal reflection loss reaches≈−58 dB,and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles.Meanwhile,a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption,covering almost the entire K and Ka bands.More importantly,an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture,which can convert electromagnetic radiation into electric energy for recycling.This work offers a new insight into electromagnetic protection and waste energy recycling,presenting a broad application prospect in radar stealth,information communication,aerospace engineering,etc.展开更多
The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared r...The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared region.The rotational constants of the X^2∑g^+ and A^2Πu states of ^15N2^+ were derived from the spectroscopic data.The isotope shifts of these bands of the A^2Πu-X^2∑g^+ system of ^14N2^+ and ^15N2^+ were also analyzed and discussed.展开更多
Terahertz vibrational spectroscopy has recently been demonstrated as a novel noninvasive technique for the characterization of biological molecules. But the interpretation of the experimentally measured terahertz abso...Terahertz vibrational spectroscopy has recently been demonstrated as a novel noninvasive technique for the characterization of biological molecules. But the interpretation of the experimentally measured terahertz absorption bands requires robust computational method. In this paper, we present a statistical method for predicting the absorption peak positions of a macromolecule in the terahertz region. The essence of this method is to calculate the absorption spectra of a biological molecule based on multiple short scale molecular dynamics trajectories instead of using a long time scale trajectory. The method was employed to calculate the absorption peak positions of the protein, thioredoxin from Escherichia coli (E.coli), in the range of 10-25 cm -1 to verify the reliability of this statistical method. The predicted absorption peak positions of thioredoxin show good correlation with measured results demonstrating that the proposed method is effective in terahertz absorption spectra modeling. Such approach can be applied to predict characteristic spectral features of biomolecules in the terahertz region.展开更多
Recently, in our experiments, we used the short-circuit current technique to study the kinetic constants for nutrient transporters in rat gastric-intestinal tract and the thickness of the intestinal unstirred layer ne...Recently, in our experiments, we used the short-circuit current technique to study the kinetic constants for nutrient transporters in rat gastric-intestinal tract and the thickness of the intestinal unstirred layer near the mucosa surface. It was shown that, during the process of aging, the number of nutrient monomer transporters in the small intestine increases twofold, whereas the affinity of transporters to the correspondent nutrients remains unchanged. The situation for peptides may be opposite. The layer thickness in the vicinity of the mucosa surface, measured through glucose, decreased during the process of aging. It was suggested that, in old rats, the role of the digestive volume is more important, which results in an increase of the number of nutrient monomer transporters.展开更多
Rapid advancements in flexible electronics and military applications necessitate high-performance electromagnetic wave(EMW)absorbers.While huge breakthroughs in achieving high-attenuation microwave absorption,conventi...Rapid advancements in flexible electronics and military applications necessitate high-performance electromagnetic wave(EMW)absorbers.While huge breakthroughs in achieving high-attenuation microwave absorption,conventional EMW absorbing materials have single function and ambiguous absorption mechanisms.Herein,numerous gel-type absorbers are fabricated by introducing“regulators”into poly(acrylamide-co-acrylic acid)(P(AM-co-AA))networks through radical polymerization in a glycerol-water mixed solvent.The dielectric constant and EMW absorption performance of the gels are precisely predicted by adjusting monomer concentration,the ratio of glycerol/water,and the content of the regulators.Notably,A_(6)G_(20)T_(20)-2 exhibits promising absorption performance with a minimum reflection loss(RL_(min))of-33.8 dB at 12.4 GHz.The effective absorption bandwidth(EAB)covers the entire X-band(8.2-12.4 GHz)at a thickness of 2.7 mm.A_(6)G_(20)T_(20)-2 also has sensitive deformation responses and excellent tensile strength,adhesiveness,self-healing and anti-freezing properties.Overall,this work not only provides insight into the polarization loss mechanism of the gels as the result of high correlation between EMW absorbing properties and molecular polarization,but also offers an important reference for developing functional protective materials because of the rich functionalities and efficient protective capabilities of the gels.展开更多
Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
文章探讨了气相分子吸收光谱法测定土壤中亚硝酸盐氮时,硫化物、甲醛、VOCs、乙草胺、丙烯酰胺、尿素等土壤中存在的物质对分析可能产生的干扰及干扰去除方法。实验结果表明,硫化物、VOCs对亚硝酸盐氮的测定结果产生正干扰。土壤提取液...文章探讨了气相分子吸收光谱法测定土壤中亚硝酸盐氮时,硫化物、甲醛、VOCs、乙草胺、丙烯酰胺、尿素等土壤中存在的物质对分析可能产生的干扰及干扰去除方法。实验结果表明,硫化物、VOCs对亚硝酸盐氮的测定结果产生正干扰。土壤提取液中加入乙酸锌+乙酸钠混合溶液并将溶液调为弱碱性(p H 10~11),可消除硫化物干扰;土壤提取液加热煮沸3~5 min,可消除VOCs的干扰。甲醛、乙草胺、丙烯酰胺、尿素基本无干扰。展开更多
文摘The background absorption of Lu and Yb matrices was studied. The experimental results show that there is a significantly wavelength-dependent. The effects of ashing temperature, heating mode, atomization temperature, recording time and matrix modifiers affecting the non-specific absorption of Lu and Yb matrices were discussed.
文摘In general, biological organisms have the ability to absorb a specific element selectively. Holcombe and his co-workers reported that copper, nickel and cobalt could be separated from riverine and sea-water samples and cadmium from river water samples by unicellular green algae and were determined by slurry GFAAS. Dar-
文摘Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concentration of nitrite nitrogen in the absorption solution was determined by spectrophotometry and gas phase molecular absorption spectrometry to obtain the concentration of nitrite nitrogen in flue gas.The experiments show that both methods are accurate and reliable.
文摘Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range from 190 to 700 nm. The molecular absorption spectrometry is often used for the determination of nonmetallic elements. Syty et al. used vapor molecular absorption spectrometry(VMAS) to determine the sulfur dioxide and sulfide, in which a hydrogen hollow cathode lamp was used as a continuum source to determine SO;at 210 nm and a deuterium arc
基金supported by the National 863 Program of China (Grant No.2006A09A102)National Natural Science Foundation of China (Grant No.40730424)Important National Science & Technology Specific Projects (Grant No.2008ZX05023005005)
文摘In this paper,we present a new method for seismic stratigraphic absorption compensation based on the adaptive molecular decomposition.Using this method,we can remove most of the effects resulting from wavelets truncation and interference which usually exist in the common time-frequency absorption compensation method.Based on the assumption that the amplitude spectrum of the source wavelet is smooth,we first construct a set of adaptive Gabor frames based on the time-variant properties of the seismic signal to transform the signal into the time-frequency domain and then extract the slowly varying component(the wavelet's time-varying amplitude spectrum) in each window in the timefrequency domain.Then we invert the absorption compensation filter parameters with an objective function defined using the correlation coefficients in each window to get the corresponding compensation filters.Finally,we use these filters to compensate the timefrequency spectrum in each window and then transform the time-frequency spectrum to the time domain to obtain the absorption-compensated signal.By using adaptive molecular decomposition,this method can adapt to isolated and overlapped seismic signals from the complex layers in the inhomogeneous viscoelastic medium.The viability of the method is verified by synthetic and real data sets.
文摘The effects of background absorption of TmCl 3 and Tm(NO 3) 3 matrices in graphite furnace atomic absorption spectrometry(GFAAS) were inverstigated. The experiments demonstrated that the background absorption of Tm matrices is obviously wavelength dependent. The background absorption of TmCl 3 is larger than that of Tm(NO 3) 3, especially in short wavelength region. The background absorption of TmCl 3 is decreased significantly as the ashing temperature increases and that of Tm matrices is eliminated completely at about 1900 ℃. The time distribution of background signal is related to the atomization temperature and the heating mode of atomization HNO 3 can be used to reduce the background absorption of TmCl 3 matrix.
基金supported by the National Natural Science Foundation of China(No.12102256).
文摘Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.
基金Funded by the National Basic Research Program of China (No.2005CB623703)National Science Foundation for Distinguished Young Scholars of China (No. 50825401)
文摘The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.
基金supported by National Natural Science Foundation of China(No.52177014,52273257,51977009,11774027,51372282,and 51132002).
文摘Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of"Big Data".Herein,drawing wisdom and inspiration from nature,an eco-mimetic nanoarchitecture is constructed for the first time,highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response.Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition(oMLD),providing a new cognition to frequency-selective microwave absorption.The optimal reflection loss reaches≈−58 dB,and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles.Meanwhile,a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption,covering almost the entire K and Ka bands.More importantly,an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture,which can convert electromagnetic radiation into electric energy for recycling.This work offers a new insight into electromagnetic protection and waste energy recycling,presenting a broad application prospect in radar stealth,information communication,aerospace engineering,etc.
基金supported by the National Natural Science Foundation of China(Grant No.11674096)
文摘The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared region.The rotational constants of the X^2∑g^+ and A^2Πu states of ^15N2^+ were derived from the spectroscopic data.The isotope shifts of these bands of the A^2Πu-X^2∑g^+ system of ^14N2^+ and ^15N2^+ were also analyzed and discussed.
基金Supported by National Science Foundation of China(Nos.60907044,91027020 and 11005148)
文摘Terahertz vibrational spectroscopy has recently been demonstrated as a novel noninvasive technique for the characterization of biological molecules. But the interpretation of the experimentally measured terahertz absorption bands requires robust computational method. In this paper, we present a statistical method for predicting the absorption peak positions of a macromolecule in the terahertz region. The essence of this method is to calculate the absorption spectra of a biological molecule based on multiple short scale molecular dynamics trajectories instead of using a long time scale trajectory. The method was employed to calculate the absorption peak positions of the protein, thioredoxin from Escherichia coli (E.coli), in the range of 10-25 cm -1 to verify the reliability of this statistical method. The predicted absorption peak positions of thioredoxin show good correlation with measured results demonstrating that the proposed method is effective in terahertz absorption spectra modeling. Such approach can be applied to predict characteristic spectral features of biomolecules in the terahertz region.
文摘Recently, in our experiments, we used the short-circuit current technique to study the kinetic constants for nutrient transporters in rat gastric-intestinal tract and the thickness of the intestinal unstirred layer near the mucosa surface. It was shown that, during the process of aging, the number of nutrient monomer transporters in the small intestine increases twofold, whereas the affinity of transporters to the correspondent nutrients remains unchanged. The situation for peptides may be opposite. The layer thickness in the vicinity of the mucosa surface, measured through glucose, decreased during the process of aging. It was suggested that, in old rats, the role of the digestive volume is more important, which results in an increase of the number of nutrient monomer transporters.
基金the support provided by the National Natural Science Foundation of China(Nos.22375166 and 21975206)Shaanxi Fundamental Science Research Project for Chemistry&Biology(No.22JHZ004)Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX0513).
文摘Rapid advancements in flexible electronics and military applications necessitate high-performance electromagnetic wave(EMW)absorbers.While huge breakthroughs in achieving high-attenuation microwave absorption,conventional EMW absorbing materials have single function and ambiguous absorption mechanisms.Herein,numerous gel-type absorbers are fabricated by introducing“regulators”into poly(acrylamide-co-acrylic acid)(P(AM-co-AA))networks through radical polymerization in a glycerol-water mixed solvent.The dielectric constant and EMW absorption performance of the gels are precisely predicted by adjusting monomer concentration,the ratio of glycerol/water,and the content of the regulators.Notably,A_(6)G_(20)T_(20)-2 exhibits promising absorption performance with a minimum reflection loss(RL_(min))of-33.8 dB at 12.4 GHz.The effective absorption bandwidth(EAB)covers the entire X-band(8.2-12.4 GHz)at a thickness of 2.7 mm.A_(6)G_(20)T_(20)-2 also has sensitive deformation responses and excellent tensile strength,adhesiveness,self-healing and anti-freezing properties.Overall,this work not only provides insight into the polarization loss mechanism of the gels as the result of high correlation between EMW absorbing properties and molecular polarization,but also offers an important reference for developing functional protective materials because of the rich functionalities and efficient protective capabilities of the gels.
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
文摘文章探讨了气相分子吸收光谱法测定土壤中亚硝酸盐氮时,硫化物、甲醛、VOCs、乙草胺、丙烯酰胺、尿素等土壤中存在的物质对分析可能产生的干扰及干扰去除方法。实验结果表明,硫化物、VOCs对亚硝酸盐氮的测定结果产生正干扰。土壤提取液中加入乙酸锌+乙酸钠混合溶液并将溶液调为弱碱性(p H 10~11),可消除硫化物干扰;土壤提取液加热煮沸3~5 min,可消除VOCs的干扰。甲醛、乙草胺、丙烯酰胺、尿素基本无干扰。